This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oeq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | f1oeq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | f1oeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐶 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |