This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite ordered set has an order isomorphism to a one-based finite sequence. (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1iso | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) | |
| 2 | eqid | ⊢ ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) = ( ℕ ∩ ( ◡ < “ { ( ( ♯ ‘ 𝐴 ) + 1 ) } ) ) | |
| 3 | eqid | ⊢ ( ω ∩ ( ◡ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) = ( ω ∩ ( ◡ ( rec ( ( 𝑛 ∈ V ↦ ( 𝑛 + 1 ) ) , 1 ) ↾ ω ) ‘ ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) | |
| 4 | eqid | ⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) | |
| 5 | 1 2 3 4 | fz1isolem | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , 𝑅 ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |