This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers is finite. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi | ⊢ ∅ ∈ Fin | |
| 2 | eleq1 | ⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → ( ( 𝑀 ... 𝑁 ) ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 4 | fzn0 | ⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 6 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 7 | 5 6 | eqsstri | ⊢ ω ⊆ Fin |
| 8 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 9 | 8 | hashgf1o | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 |
| 10 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | uznn0sub | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) |
| 13 | f1ocnvdm | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ ω ) | |
| 14 | 9 12 13 | sylancr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ ω ) |
| 15 | 7 14 | sselid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ Fin ) |
| 16 | 8 | fzen2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
| 17 | enfii | ⊢ ( ( ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ Fin ∧ ( 𝑀 ... 𝑁 ) ≈ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 19 | 4 18 | sylbi | ⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
| 20 | 3 19 | pm2.61ine | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |