This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the empty set is the empty set. (Contributed by AV, 12-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supp0 | ⊢ ( 𝑍 ∈ 𝑊 → ( ∅ supp 𝑍 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | suppval | ⊢ ( ( ∅ ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( ∅ supp 𝑍 ) = { 𝑖 ∈ dom ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑍 ∈ 𝑊 → ( ∅ supp 𝑍 ) = { 𝑖 ∈ dom ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| 4 | dm0 | ⊢ dom ∅ = ∅ | |
| 5 | rabeq | ⊢ ( dom ∅ = ∅ → { 𝑖 ∈ dom ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } = { 𝑖 ∈ ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝑍 ∈ 𝑊 → { 𝑖 ∈ dom ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } = { 𝑖 ∈ ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } ) |
| 7 | rab0 | ⊢ { 𝑖 ∈ ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } = ∅ | |
| 8 | 7 | a1i | ⊢ ( 𝑍 ∈ 𝑊 → { 𝑖 ∈ ∅ ∣ ( ∅ “ { 𝑖 } ) ≠ { 𝑍 } } = ∅ ) |
| 9 | 3 6 8 | 3eqtrd | ⊢ ( 𝑍 ∈ 𝑊 → ( ∅ supp 𝑍 ) = ∅ ) |