This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| gsumval2.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| gsumval2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) | ||
| Assertion | gsumval2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumval2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 4 | gsumval2.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | gsumval2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐺 ∈ 𝑉 ) |
| 9 | ovexd | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝑀 ... 𝑁 ) ∈ V ) | |
| 10 | 5 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) | |
| 13 | df-f | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ↔ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ) | |
| 14 | 11 12 13 | sylanbrc | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
| 15 | 1 6 2 7 8 9 14 | gsumval1 | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | simpl | ⊢ ( ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ( 𝑥 + 𝑦 ) = 𝑦 ) | |
| 17 | 16 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ) |
| 18 | 17 | a1i | ⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
| 19 | 18 | ss2rabi | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } |
| 20 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 21 | 20 | snid | ⊢ ( 0g ‘ 𝐺 ) ∈ { ( 0g ‘ 𝐺 ) } |
| 22 | 5 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
| 23 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 24 | ne0i | ⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) | |
| 25 | 4 23 24 | 3syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
| 26 | 22 25 | eqnetrd | ⊢ ( 𝜑 → dom 𝐹 ≠ ∅ ) |
| 27 | dm0rn0 | ⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) | |
| 28 | 27 | necon3bii | ⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 29 | 26 28 | sylib | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ran 𝐹 ≠ ∅ ) |
| 31 | ssn0 | ⊢ ( ( ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ∧ ran 𝐹 ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ≠ ∅ ) | |
| 32 | 12 30 31 | syl2anc | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ≠ ∅ ) |
| 33 | 32 | neneqd | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ¬ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ) |
| 34 | 1 6 2 7 | mgmidsssn0 | ⊢ ( 𝐺 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 36 | sssn | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ↔ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ∨ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) ) | |
| 37 | 35 36 | sylib | ⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ∨ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) ) |
| 38 | 37 | orcanai | ⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) |
| 39 | 33 38 | syldan | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) |
| 40 | 21 39 | eleqtrrid | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
| 41 | 19 40 | sselid | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } ) |
| 42 | oveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) | |
| 43 | 42 | eqeq1d | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
| 44 | 43 | ralbidv | ⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
| 45 | 44 | elrab | ⊢ ( ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
| 46 | oveq2 | ⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) | |
| 47 | id | ⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → 𝑦 = ( 0g ‘ 𝐺 ) ) | |
| 48 | 46 47 | eqeq12d | ⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ↔ ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 49 | 48 | rspcva | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 50 | 45 49 | sylbi | ⊢ ( ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 51 | 41 50 | syl | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 52 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 53 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 54 | 14 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
| 55 | 53 54 | sseldd | ⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ { ( 0g ‘ 𝐺 ) } ) |
| 56 | elsni | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ { ( 0g ‘ 𝐺 ) } → ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ 𝐺 ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 58 | 51 52 57 | seqid3 | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 0g ‘ 𝐺 ) ) |
| 59 | 15 58 | eqtr4d | ⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 60 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐺 ∈ 𝑉 ) |
| 61 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 62 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
| 63 | simpr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) | |
| 64 | 1 2 60 61 62 7 63 | gsumval2a | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 65 | 59 64 | pm2.61dan | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |