This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | ||
| gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | ||
| gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | ||
| Assertion | gsumval3lem2 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 10 | gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | |
| 11 | gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | |
| 12 | gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | |
| 13 | f1f | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 14 | 10 13 | syl | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 15 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 16 | 14 15 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 17 | vex | ⊢ 𝑓 ∈ V | |
| 18 | coexg | ⊢ ( ( 𝐻 ∈ V ∧ 𝑓 ∈ V ) → ( 𝐻 ∘ 𝑓 ) ∈ V ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝑓 ) ∈ V ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) ∈ V ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem1 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 22 | fzfi | ⊢ ( 1 ... 𝑀 ) ∈ Fin | |
| 23 | suppssdm | ⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∘ 𝐻 ) | |
| 24 | 12 23 | eqsstri | ⊢ 𝑊 ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 25 | 7 14 | fcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 26 | 24 25 | fssdm | ⊢ ( 𝜑 → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 27 | ssfi | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin ) | |
| 28 | 22 26 27 | sylancr | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ∈ Fin ) |
| 30 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 31 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 32 | f1ores | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 34 | 12 | imaeq2i | ⊢ ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 35 | 7 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 36 | ovex | ⊢ ( 1 ... 𝑀 ) ∈ V | |
| 37 | fex | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐻 ∈ V ) | |
| 38 | 14 36 37 | sylancl | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 39 | 35 38 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ) |
| 40 | f1fun | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → Fun 𝐻 ) | |
| 41 | 10 40 | syl | ⊢ ( 𝜑 → Fun 𝐻 ) |
| 42 | 41 11 | jca | ⊢ ( 𝜑 → ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) |
| 43 | imacosupp | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) ) | |
| 44 | 39 42 43 | sylc | ⊢ ( 𝜑 → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 46 | 34 45 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 48 | 47 | f1oeq3d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 49 | 33 48 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 50 | 29 49 | hasheqf1od | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 supp 0 ) ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 52 | 21 51 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 53 | f1oeq1 | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) | |
| 54 | coeq2 | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) | |
| 55 | 54 | seqeq3d | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) = seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ) |
| 56 | 55 | fveq1d | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 58 | 53 57 | anbi12d | ⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 59 | 20 52 58 | spcedv | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 60 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐺 ∈ Mnd ) |
| 61 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 62 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 63 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 64 | f1f1orn | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) | |
| 65 | 10 64 | syl | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 66 | f1oen3g | ⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) | |
| 67 | 16 65 66 | syl2anc | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) |
| 68 | enfi | ⊢ ( ( 1 ... 𝑀 ) ≈ ran 𝐻 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) | |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) |
| 70 | 22 69 | mpbii | ⊢ ( 𝜑 → ran 𝐻 ∈ Fin ) |
| 71 | 70 11 | ssfid | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 73 | 12 | neeq1i | ⊢ ( 𝑊 ≠ ∅ ↔ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ ) |
| 74 | supp0cosupp0 | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝐹 supp 0 ) = ∅ → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ∅ ) ) | |
| 75 | 74 | necon3d | ⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 76 | 35 38 75 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 77 | 73 76 | biimtrid | ⊢ ( 𝜑 → ( 𝑊 ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 78 | 77 | imp | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐹 supp 0 ) ≠ ∅ ) |
| 79 | 78 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ≠ ∅ ) |
| 80 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) |
| 81 | 14 | frnd | ⊢ ( 𝜑 → ran 𝐻 ⊆ 𝐴 ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐻 ⊆ 𝐴 ) |
| 83 | 80 82 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 84 | 1 2 3 4 60 61 62 63 72 79 83 | gsumval3eu | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 85 | iota1 | ⊢ ( ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) |
| 87 | eqid | ⊢ ( 𝐹 supp 0 ) = ( 𝐹 supp 0 ) | |
| 88 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ¬ 𝐴 ∈ ran ... ) | |
| 89 | 1 2 3 4 60 61 62 63 72 79 87 88 | gsumval3a | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 90 | 89 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) |
| 91 | 86 90 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ) |
| 92 | 91 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ) |
| 93 | fvex | ⊢ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∈ V | |
| 94 | eqeq1 | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) | |
| 95 | 94 | anbi2d | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 96 | 95 | exbidv | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 97 | eqeq2 | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 98 | 96 97 | bibi12d | ⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ↔ ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 99 | 93 98 | spcv | ⊢ ( ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 100 | 92 99 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 101 | 59 100 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |