This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Po 𝐵 → 𝑅 Po 𝐴 ) ) | |
| 2 | ss2ralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 3 | 1 2 | anim12d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑅 Po 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) → ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) ) |
| 4 | df-so | ⊢ ( 𝑅 Or 𝐵 ↔ ( 𝑅 Po 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 5 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 6 | 3 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ) |