This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a .+ -idempotent sums (or " .+ 's") to that element. (Contributed by Mario Carneiro, 15-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid3.1 | ⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) = 𝑍 ) | |
| seqid3.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqid3.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | ||
| Assertion | seqid3 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid3.1 | ⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) = 𝑍 ) | |
| 2 | seqid3.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | seqid3.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | |
| 4 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 5 | 4 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 6 | 3 5 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) |
| 7 | ovex | ⊢ ( 𝑍 + 𝑍 ) ∈ V | |
| 8 | 7 | elsn | ⊢ ( ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 9 | 1 8 | sylibr | ⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ) |
| 10 | elsni | ⊢ ( 𝑥 ∈ { 𝑍 } → 𝑥 = 𝑍 ) | |
| 11 | elsni | ⊢ ( 𝑦 ∈ { 𝑍 } → 𝑦 = 𝑍 ) | |
| 12 | 10 11 | oveqan12d | ⊢ ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( 𝑥 + 𝑦 ) = ( 𝑍 + 𝑍 ) ) |
| 13 | 12 | eleq1d | ⊢ ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ) ) |
| 14 | 9 13 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ) |
| 16 | 2 6 15 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } ) |
| 17 | elsni | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |