This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcoll2.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) | |
| seqcoll2.1b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) | ||
| seqcoll2.c | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) | ||
| seqcoll2.a | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | ||
| seqcoll2.2 | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | ||
| seqcoll2.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| seqcoll2.5 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | ||
| seqcoll2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcoll2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | ||
| seqcoll2.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | ||
| Assertion | seqcoll2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcoll2.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) | |
| 2 | seqcoll2.1b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) | |
| 3 | seqcoll2.c | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) | |
| 4 | seqcoll2.a | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | |
| 5 | seqcoll2.2 | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 6 | seqcoll2.3 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 7 | seqcoll2.5 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 8 | seqcoll2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 9 | seqcoll2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | |
| 10 | seqcoll2.8 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | |
| 11 | fzssuz | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
| 12 | isof1o | ⊢ ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 14 | f1of | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 16 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 17 | ssfi | ⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ Fin ) | |
| 18 | 16 7 17 | sylancr | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 19 | hasheq0 | ⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 21 | 20 | necon3bbid | ⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 ≠ ∅ ) ) |
| 22 | 6 21 | mpbird | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 0 ) |
| 23 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 24 | 18 23 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 25 | elnn0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 27 | 26 | ord | ⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 28 | 22 27 | mt3d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 29 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 30 | 28 29 | eleqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 31 | eluzfz2 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 33 | 15 32 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 ) |
| 34 | 7 33 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 35 | 11 34 | sselid | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 | elfzuz3 | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 37 | 34 36 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 38 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 40 | 39 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 41 | 40 8 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 42 | 35 41 3 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∈ 𝑆 ) |
| 43 | peano2uz | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 44 | 35 43 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 45 | fzss1 | ⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝜑 → ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 47 | 46 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 48 | eluzelre | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 49 | 35 48 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 51 | peano2re | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) |
| 53 | elfzelz | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 54 | 53 | zred | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → 𝑘 ∈ ℝ ) |
| 55 | 54 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 56 | 50 | ltp1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ) |
| 57 | elfzle1 | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ≤ 𝑘 ) |
| 59 | 50 52 55 56 58 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) |
| 60 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 61 | f1ocnv | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 63 | f1of | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 65 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ 𝐴 ) | |
| 66 | 64 65 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 67 | 66 | elfzelzd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
| 68 | 67 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 69 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 70 | 69 | nn0red | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 71 | elfzle2 | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐴 ) ) | |
| 72 | 66 71 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 73 | 68 70 72 | lensymd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ) |
| 74 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 75 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 76 | isorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | |
| 77 | 74 75 66 76 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 78 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) | |
| 79 | 60 65 78 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
| 80 | 79 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
| 81 | 77 80 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
| 82 | 73 81 | mtbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) |
| 83 | 82 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝑘 ∈ 𝐴 → ¬ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) < 𝑘 ) ) |
| 84 | 59 83 | mt2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ¬ 𝑘 ∈ 𝐴 ) |
| 85 | 47 84 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
| 86 | 85 9 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 87 | 2 35 37 42 86 | seqid2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 88 | 7 11 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 89 | 39 | ssdifd | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
| 90 | 89 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → 𝑘 ∈ ( ( 𝑀 ... 𝑁 ) ∖ 𝐴 ) ) |
| 91 | 90 9 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 92 | 1 2 3 4 5 32 88 41 91 10 | seqcoll | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 93 | 87 92 | eqtr3d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ 𝐴 ) ) ) |