This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of one-to-one onto functions. (Contributed by NM, 19-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oco | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ) | |
| 2 | df-f1o | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐺 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ) | |
| 3 | f1co | ⊢ ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ) | |
| 4 | foco | ⊢ ( ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( 𝐹 : 𝐵 –onto→ 𝐶 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) |
| 6 | 5 | an4s | ⊢ ( ( ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝐺 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –onto→ 𝐵 ) ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) |
| 7 | 1 2 6 | syl2anb | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) |
| 8 | df-f1o | ⊢ ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1-onto→ 𝐶 ↔ ( ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1→ 𝐶 ∧ ( 𝐹 ∘ 𝐺 ) : 𝐴 –onto→ 𝐶 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 –1-1-onto→ 𝐶 ) |