This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for class composition. Theorem 27 of Suppes p. 64. Also Exercise 21 of Enderton p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coass | ⊢ ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) = ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) | |
| 2 | relco | ⊢ Rel ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) | |
| 3 | excom | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ↔ ∃ 𝑤 ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) | |
| 4 | anass | ⊢ ( ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ↔ ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) | |
| 5 | 4 | 2exbii | ⊢ ( ∃ 𝑤 ∃ 𝑧 ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ↔ ∃ 𝑤 ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 6 | 3 5 | bitr4i | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ↔ ∃ 𝑤 ∃ 𝑧 ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) |
| 7 | vex | ⊢ 𝑧 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | brco | ⊢ ( 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑤 ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ( 𝑥 𝐶 𝑧 ∧ ∃ 𝑤 ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ ∃ 𝑤 ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 12 8 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) ↔ ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ) |
| 14 | exdistr | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ ∃ 𝑤 ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) | |
| 15 | 11 13 14 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑥 𝐶 𝑧 ∧ ( 𝑧 𝐵 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) ) |
| 16 | vex | ⊢ 𝑤 ∈ V | |
| 17 | 12 16 | brco | ⊢ ( 𝑥 ( 𝐵 ∘ 𝐶 ) 𝑤 ↔ ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ) |
| 18 | 17 | anbi1i | ⊢ ( ( 𝑥 ( 𝐵 ∘ 𝐶 ) 𝑤 ∧ 𝑤 𝐴 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) |
| 19 | 18 | exbii | ⊢ ( ∃ 𝑤 ( 𝑥 ( 𝐵 ∘ 𝐶 ) 𝑤 ∧ 𝑤 𝐴 𝑦 ) ↔ ∃ 𝑤 ( ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) |
| 20 | 12 8 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) ↔ ∃ 𝑤 ( 𝑥 ( 𝐵 ∘ 𝐶 ) 𝑤 ∧ 𝑤 𝐴 𝑦 ) ) |
| 21 | 19.41v | ⊢ ( ∃ 𝑧 ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ↔ ( ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) | |
| 22 | 21 | exbii | ⊢ ( ∃ 𝑤 ∃ 𝑧 ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ↔ ∃ 𝑤 ( ∃ 𝑧 ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) |
| 23 | 19 20 22 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) ↔ ∃ 𝑤 ∃ 𝑧 ( ( 𝑥 𝐶 𝑧 ∧ 𝑧 𝐵 𝑤 ) ∧ 𝑤 𝐴 𝑦 ) ) |
| 24 | 6 15 23 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) ) |
| 25 | 1 2 24 | eqrelriiv | ⊢ ( ( 𝐴 ∘ 𝐵 ) ∘ 𝐶 ) = ( 𝐴 ∘ ( 𝐵 ∘ 𝐶 ) ) |