This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange a sum via an arbitrary bijection on ( M ... N ) . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | ||
| seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | ||
| seqf1o.6 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) | ||
| seqf1o.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) | ||
| seqf1o.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | seqf1o | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqf1o.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 3 | seqf1o.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 4 | seqf1o.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | seqf1o.5 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) | |
| 6 | seqf1o.6 | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) | |
| 7 | seqf1o.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 8 | seqf1o.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 9 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) | |
| 11 | f1oeq23 | ⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) ) | |
| 12 | 10 10 11 | syl2anc | ⊢ ( 𝑥 = 𝑀 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) ) |
| 13 | 10 | feq2d | ⊢ ( 𝑥 = 𝑀 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) |
| 14 | 12 13 | anbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
| 18 | 14 17 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
| 19 | 18 | 2albidv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ) | |
| 22 | f1oeq23 | ⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) | |
| 23 | 21 21 22 | syl2anc | ⊢ ( 𝑥 = 𝑘 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) |
| 24 | 21 | feq2d | ⊢ ( 𝑥 = 𝑘 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) |
| 29 | 25 28 | imbi12d | ⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) |
| 30 | 29 | 2albidv | ⊢ ( 𝑥 = 𝑘 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ) | |
| 33 | f1oeq23 | ⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) | |
| 34 | 32 32 33 | syl2anc | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) |
| 35 | 32 | feq2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) |
| 36 | 34 35 | anbi12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ) |
| 37 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) ) | |
| 38 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) | |
| 39 | 37 38 | eqeq12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 40 | 36 39 | imbi12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 41 | 40 | 2albidv | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 42 | 41 | imbi2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) | |
| 44 | f1oeq23 | ⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) | |
| 45 | 43 43 44 | syl2anc | ⊢ ( 𝑥 = 𝑁 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) |
| 46 | 43 | feq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
| 47 | 45 46 | anbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
| 48 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) | |
| 50 | 48 49 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) |
| 51 | 47 50 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
| 52 | 51 | 2albidv | ⊢ ( 𝑥 = 𝑁 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
| 53 | 52 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) ) |
| 54 | f1of | ⊢ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) → 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ) | |
| 55 | 54 | adantr | ⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ) |
| 56 | elfz3 | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) | |
| 57 | fvco3 | ⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ∧ 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) ) | |
| 58 | 55 56 57 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) ) |
| 59 | ffvelcdm | ⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ∧ 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) | |
| 60 | 54 56 59 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) |
| 61 | fzsn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) | |
| 62 | 61 | eleq2d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ↔ ( 𝑓 ‘ 𝑀 ) ∈ { 𝑀 } ) ) |
| 63 | elsni | ⊢ ( ( 𝑓 ‘ 𝑀 ) ∈ { 𝑀 } → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) | |
| 64 | 62 63 | biimtrdi | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) ) |
| 65 | 64 | imp | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
| 66 | 60 65 | syldan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
| 67 | 66 | adantrr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
| 68 | 67 | fveq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
| 69 | 58 68 | eqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
| 70 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) ) |
| 72 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) | |
| 73 | 72 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
| 74 | 69 71 73 | 3eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) |
| 75 | 74 | ex | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
| 76 | 75 | alrimivv | ⊢ ( 𝑀 ∈ ℤ → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
| 77 | 76 | a1d | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
| 78 | f1oeq1 | ⊢ ( 𝑓 = 𝑡 → ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ↔ 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) | |
| 79 | feq1 | ⊢ ( 𝑔 = 𝑠 → ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ↔ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) | |
| 80 | 78 79 | bi2anan9r | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ↔ ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) ) |
| 81 | coeq1 | ⊢ ( 𝑔 = 𝑠 → ( 𝑔 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑓 ) ) | |
| 82 | coeq2 | ⊢ ( 𝑓 = 𝑡 → ( 𝑠 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑡 ) ) | |
| 83 | 81 82 | sylan9eq | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( 𝑔 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑡 ) ) |
| 84 | 83 | seqeq3d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ) |
| 85 | 84 | fveq1d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) ) |
| 86 | simpl | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → 𝑔 = 𝑠 ) | |
| 87 | 86 | seqeq3d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , 𝑠 ) ) |
| 88 | 87 | fveq1d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) |
| 89 | 85 88 | eqeq12d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ↔ ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
| 90 | 80 89 | imbi12d | ⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ↔ ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) ) |
| 91 | 90 | cbval2vw | ⊢ ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ↔ ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
| 92 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝜑 ) | |
| 93 | 92 1 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 94 | 92 2 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 95 | 92 3 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 96 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 97 | 92 5 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝐶 ⊆ 𝑆 ) |
| 98 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) | |
| 99 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) | |
| 100 | eqid | ⊢ ( 𝑤 ∈ ( 𝑀 ... 𝑘 ) ↦ ( 𝑓 ‘ if ( 𝑤 < ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) , 𝑤 , ( 𝑤 + 1 ) ) ) ) = ( 𝑤 ∈ ( 𝑀 ... 𝑘 ) ↦ ( 𝑓 ‘ if ( 𝑤 < ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) , 𝑤 , ( 𝑤 + 1 ) ) ) ) | |
| 101 | eqid | ⊢ ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) | |
| 102 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) | |
| 103 | 102 91 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
| 104 | 93 94 95 96 97 98 99 100 101 103 | seqf1olem2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) |
| 105 | 104 | exp31 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 106 | 91 105 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 107 | 106 | alrimdv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 108 | 107 | alrimdv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 109 | 91 108 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 110 | 109 | expcom | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 111 | 110 | a2d | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 112 | 20 31 42 53 77 111 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
| 113 | 4 112 | mpcom | ⊢ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) |
| 114 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 115 | eqid | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) | |
| 116 | 114 115 | fnmpti | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) Fn ( 𝑀 ... 𝑁 ) |
| 117 | fzfi | ⊢ ( 𝑀 ... 𝑁 ) ∈ Fin | |
| 118 | fnfi | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) Fn ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin ) | |
| 119 | 116 117 118 | mp2an | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin |
| 120 | f1of | ⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) | |
| 121 | 6 120 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
| 122 | ovexd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ V ) | |
| 123 | fex2 | ⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ V ∧ ( 𝑀 ... 𝑁 ) ∈ V ) → 𝐹 ∈ V ) | |
| 124 | 121 122 122 123 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 125 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ↔ 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) | |
| 126 | feq1 | ⊢ ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) → ( 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) | |
| 127 | 125 126 | bi2anan9r | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ↔ ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
| 128 | coeq1 | ⊢ ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝑓 ) ) | |
| 129 | coeq2 | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) | |
| 130 | 128 129 | sylan9eq | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) |
| 131 | 130 | seqeq3d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ) |
| 132 | 131 | fveq1d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) ) |
| 133 | simpl | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 134 | 133 | seqeq3d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 135 | 134 | fveq1d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) |
| 136 | 132 135 | eqeq12d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) |
| 137 | 127 136 | imbi12d | ⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
| 138 | 137 | spc2gv | ⊢ ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin ∧ 𝐹 ∈ V ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
| 139 | 119 124 138 | sylancr | ⊢ ( 𝜑 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
| 140 | 113 139 | mpd | ⊢ ( 𝜑 → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) |
| 141 | 6 9 140 | mp2and | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) |
| 142 | 121 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 143 | fveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 144 | fvex | ⊢ ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 145 | 143 115 144 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 146 | 142 145 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 147 | fvco3 | ⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 148 | 121 147 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 149 | 146 148 8 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) |
| 150 | 4 149 | seqfveq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) ) |
| 151 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 152 | fvex | ⊢ ( 𝐺 ‘ 𝑘 ) ∈ V | |
| 153 | 151 115 152 | fvmpt | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 154 | 153 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 155 | 4 154 | seqfveq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 156 | 141 150 155 | 3eqtr3d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |