This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolioo | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 2 | mblvol | |- ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) |
| 4 | iccmbl | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
|
| 5 | mblvol | |- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
| 8 | 1 | a1i | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A (,) B ) e. dom vol ) |
| 9 | prssi | |- ( ( A e. RR /\ B e. RR ) -> { A , B } C_ RR ) |
|
| 10 | 9 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> { A , B } C_ RR ) |
| 11 | prfi | |- { A , B } e. Fin |
|
| 12 | ovolfi | |- ( ( { A , B } e. Fin /\ { A , B } C_ RR ) -> ( vol* ` { A , B } ) = 0 ) |
|
| 13 | 11 10 12 | sylancr | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` { A , B } ) = 0 ) |
| 14 | nulmbl | |- ( ( { A , B } C_ RR /\ ( vol* ` { A , B } ) = 0 ) -> { A , B } e. dom vol ) |
|
| 15 | 10 13 14 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> { A , B } e. dom vol ) |
| 16 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 17 | 16 | ineq2i | |- ( ( A (,) B ) i^i { A , B } ) = ( ( A (,) B ) i^i ( { A } u. { B } ) ) |
| 18 | indi | |- ( ( A (,) B ) i^i ( { A } u. { B } ) ) = ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) |
|
| 19 | 17 18 | eqtri | |- ( ( A (,) B ) i^i { A , B } ) = ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) |
| 20 | simp1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR ) |
|
| 21 | 20 | ltnrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. A < A ) |
| 22 | eliooord | |- ( A e. ( A (,) B ) -> ( A < A /\ A < B ) ) |
|
| 23 | 22 | simpld | |- ( A e. ( A (,) B ) -> A < A ) |
| 24 | 21 23 | nsyl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. A e. ( A (,) B ) ) |
| 25 | disjsn | |- ( ( ( A (,) B ) i^i { A } ) = (/) <-> -. A e. ( A (,) B ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { A } ) = (/) ) |
| 27 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
|
| 28 | 27 | ltnrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. B < B ) |
| 29 | eliooord | |- ( B e. ( A (,) B ) -> ( A < B /\ B < B ) ) |
|
| 30 | 29 | simprd | |- ( B e. ( A (,) B ) -> B < B ) |
| 31 | 28 30 | nsyl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> -. B e. ( A (,) B ) ) |
| 32 | disjsn | |- ( ( ( A (,) B ) i^i { B } ) = (/) <-> -. B e. ( A (,) B ) ) |
|
| 33 | 31 32 | sylibr | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { B } ) = (/) ) |
| 34 | 26 33 | uneq12d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) = ( (/) u. (/) ) ) |
| 35 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 36 | 34 35 | eqtrdi | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( ( A (,) B ) i^i { A } ) u. ( ( A (,) B ) i^i { B } ) ) = (/) ) |
| 37 | 19 36 | eqtrid | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) i^i { A , B } ) = (/) ) |
| 38 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 39 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 40 | 39 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
| 41 | ovolicc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
|
| 42 | 27 20 | resubcld | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
| 43 | 41 42 | eqeltrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
| 44 | ovolsscl | |- ( ( ( A (,) B ) C_ ( A [,] B ) /\ ( A [,] B ) C_ RR /\ ( vol* ` ( A [,] B ) ) e. RR ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
|
| 45 | 38 40 43 44 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 46 | 3 45 | eqeltrid | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) e. RR ) |
| 47 | mblvol | |- ( { A , B } e. dom vol -> ( vol ` { A , B } ) = ( vol* ` { A , B } ) ) |
|
| 48 | 15 47 | syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) = ( vol* ` { A , B } ) ) |
| 49 | 48 13 | eqtrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) = 0 ) |
| 50 | 0re | |- 0 e. RR |
|
| 51 | 49 50 | eqeltrdi | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` { A , B } ) e. RR ) |
| 52 | volun | |- ( ( ( ( A (,) B ) e. dom vol /\ { A , B } e. dom vol /\ ( ( A (,) B ) i^i { A , B } ) = (/) ) /\ ( ( vol ` ( A (,) B ) ) e. RR /\ ( vol ` { A , B } ) e. RR ) ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) ) |
|
| 53 | 8 15 37 46 51 52 | syl32anc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) ) |
| 54 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 55 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 56 | id | |- ( A <_ B -> A <_ B ) |
|
| 57 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 58 | 54 55 56 57 | syl3an | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 59 | 58 | fveq2d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( ( A (,) B ) u. { A , B } ) ) = ( vol ` ( A [,] B ) ) ) |
| 60 | 49 | oveq2d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) = ( ( vol ` ( A (,) B ) ) + 0 ) ) |
| 61 | 46 | recnd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) e. CC ) |
| 62 | 61 | addridd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + 0 ) = ( vol ` ( A (,) B ) ) ) |
| 63 | 60 62 | eqtrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( vol ` ( A (,) B ) ) + ( vol ` { A , B } ) ) = ( vol ` ( A (,) B ) ) ) |
| 64 | 53 59 63 | 3eqtr3d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( vol ` ( A (,) B ) ) ) |
| 65 | 7 64 41 | 3eqtr3d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
| 66 | 3 65 | eqtr3id | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |