This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| uniioombl.m | |- ( ph -> M e. NN ) |
||
| uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
||
| uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
||
| uniioombl.n | |- ( ph -> N e. NN ) |
||
| uniioombl.n2 | |- ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
||
| uniioombl.l | |- L = U. ( ( (,) o. F ) " ( 1 ... N ) ) |
||
| Assertion | uniioombllem5 | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | uniioombl.m | |- ( ph -> M e. NN ) |
|
| 12 | uniioombl.m2 | |- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
|
| 13 | uniioombl.k | |- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
|
| 14 | uniioombl.n | |- ( ph -> N e. NN ) |
|
| 15 | uniioombl.n2 | |- ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
|
| 16 | uniioombl.l | |- L = U. ( ( (,) o. F ) " ( 1 ... N ) ) |
|
| 17 | inss1 | |- ( E i^i A ) C_ E |
|
| 18 | 7 | uniiccdif | |- ( ph -> ( U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) /\ ( vol* ` ( U. ran ( [,] o. G ) \ U. ran ( (,) o. G ) ) ) = 0 ) ) |
| 19 | 18 | simpld | |- ( ph -> U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) ) |
| 20 | ovolficcss | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. G ) C_ RR ) |
|
| 21 | 7 20 | syl | |- ( ph -> U. ran ( [,] o. G ) C_ RR ) |
| 22 | 19 21 | sstrd | |- ( ph -> U. ran ( (,) o. G ) C_ RR ) |
| 23 | 8 22 | sstrd | |- ( ph -> E C_ RR ) |
| 24 | ovolsscl | |- ( ( ( E i^i A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i A ) ) e. RR ) |
|
| 25 | 17 23 5 24 | mp3an2i | |- ( ph -> ( vol* ` ( E i^i A ) ) e. RR ) |
| 26 | difssd | |- ( ph -> ( E \ A ) C_ E ) |
|
| 27 | ovolsscl | |- ( ( ( E \ A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ A ) ) e. RR ) |
|
| 28 | 26 23 5 27 | syl3anc | |- ( ph -> ( vol* ` ( E \ A ) ) e. RR ) |
| 29 | 25 28 | readdcld | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) e. RR ) |
| 30 | inss1 | |- ( K i^i A ) C_ K |
|
| 31 | imassrn | |- ( ( (,) o. G ) " ( 1 ... M ) ) C_ ran ( (,) o. G ) |
|
| 32 | 31 | unissi | |- U. ( ( (,) o. G ) " ( 1 ... M ) ) C_ U. ran ( (,) o. G ) |
| 33 | 13 32 | eqsstri | |- K C_ U. ran ( (,) o. G ) |
| 34 | 33 22 | sstrid | |- ( ph -> K C_ RR ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 36 | ssid | |- U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) |
|
| 37 | 9 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) ) -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 38 | 7 36 37 | sylancl | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
| 39 | ovollecl | |- ( ( U. ran ( (,) o. G ) C_ RR /\ sup ( ran T , RR* , < ) e. RR /\ ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
|
| 40 | 22 35 38 39 | syl3anc | |- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
| 41 | ovolsscl | |- ( ( K C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` K ) e. RR ) |
|
| 42 | 33 22 40 41 | mp3an2i | |- ( ph -> ( vol* ` K ) e. RR ) |
| 43 | ovolsscl | |- ( ( ( K i^i A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i A ) ) e. RR ) |
|
| 44 | 30 34 42 43 | mp3an2i | |- ( ph -> ( vol* ` ( K i^i A ) ) e. RR ) |
| 45 | difssd | |- ( ph -> ( K \ A ) C_ K ) |
|
| 46 | ovolsscl | |- ( ( ( K \ A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K \ A ) ) e. RR ) |
|
| 47 | 45 34 42 46 | syl3anc | |- ( ph -> ( vol* ` ( K \ A ) ) e. RR ) |
| 48 | 44 47 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) e. RR ) |
| 49 | 6 | rpred | |- ( ph -> C e. RR ) |
| 50 | 49 49 | readdcld | |- ( ph -> ( C + C ) e. RR ) |
| 51 | 48 50 | readdcld | |- ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) e. RR ) |
| 52 | 4re | |- 4 e. RR |
|
| 53 | remulcl | |- ( ( 4 e. RR /\ C e. RR ) -> ( 4 x. C ) e. RR ) |
|
| 54 | 52 49 53 | sylancr | |- ( ph -> ( 4 x. C ) e. RR ) |
| 55 | 5 54 | readdcld | |- ( ph -> ( ( vol* ` E ) + ( 4 x. C ) ) e. RR ) |
| 56 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | uniioombllem3 | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) < ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) ) |
| 57 | 29 51 56 | ltled | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) ) |
| 58 | 5 50 | readdcld | |- ( ph -> ( ( vol* ` E ) + ( C + C ) ) e. RR ) |
| 59 | 42 49 | readdcld | |- ( ph -> ( ( vol* ` K ) + C ) e. RR ) |
| 60 | inss1 | |- ( K i^i L ) C_ K |
|
| 61 | ovolsscl | |- ( ( ( K i^i L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i L ) ) e. RR ) |
|
| 62 | 60 34 42 61 | mp3an2i | |- ( ph -> ( vol* ` ( K i^i L ) ) e. RR ) |
| 63 | 62 49 | readdcld | |- ( ph -> ( ( vol* ` ( K i^i L ) ) + C ) e. RR ) |
| 64 | difssd | |- ( ph -> ( K \ L ) C_ K ) |
|
| 65 | ovolsscl | |- ( ( ( K \ L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K \ L ) ) e. RR ) |
|
| 66 | 64 34 42 65 | syl3anc | |- ( ph -> ( vol* ` ( K \ L ) ) e. RR ) |
| 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | uniioombllem4 | |- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |
| 68 | imassrn | |- ( ( (,) o. F ) " ( 1 ... N ) ) C_ ran ( (,) o. F ) |
|
| 69 | 68 | unissi | |- U. ( ( (,) o. F ) " ( 1 ... N ) ) C_ U. ran ( (,) o. F ) |
| 70 | 69 16 4 | 3sstr4i | |- L C_ A |
| 71 | sscon | |- ( L C_ A -> ( K \ A ) C_ ( K \ L ) ) |
|
| 72 | 70 71 | mp1i | |- ( ph -> ( K \ A ) C_ ( K \ L ) ) |
| 73 | 64 34 | sstrd | |- ( ph -> ( K \ L ) C_ RR ) |
| 74 | ovolss | |- ( ( ( K \ A ) C_ ( K \ L ) /\ ( K \ L ) C_ RR ) -> ( vol* ` ( K \ A ) ) <_ ( vol* ` ( K \ L ) ) ) |
|
| 75 | 72 73 74 | syl2anc | |- ( ph -> ( vol* ` ( K \ A ) ) <_ ( vol* ` ( K \ L ) ) ) |
| 76 | 44 47 63 66 67 75 | le2addd | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) ) |
| 77 | 62 | recnd | |- ( ph -> ( vol* ` ( K i^i L ) ) e. CC ) |
| 78 | 49 | recnd | |- ( ph -> C e. CC ) |
| 79 | 66 | recnd | |- ( ph -> ( vol* ` ( K \ L ) ) e. CC ) |
| 80 | 77 78 79 | add32d | |- ( ph -> ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) = ( ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) + C ) ) |
| 81 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 82 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 83 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 84 | 82 83 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 85 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 86 | 1 84 85 | sylancl | |- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 87 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 88 | 81 86 87 | sylancr | |- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 89 | ffun | |- ( ( (,) o. F ) : NN --> ~P RR -> Fun ( (,) o. F ) ) |
|
| 90 | funiunfv | |- ( Fun ( (,) o. F ) -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
|
| 91 | 88 89 90 | 3syl | |- ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
| 92 | 91 16 | eqtr4di | |- ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = L ) |
| 93 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 94 | elfznn | |- ( n e. ( 1 ... N ) -> n e. NN ) |
|
| 95 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
|
| 96 | 1 94 95 | syl2an | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 97 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 98 | 1 94 97 | syl2an | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 99 | 98 | elin2d | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) e. ( RR X. RR ) ) |
| 100 | 1st2nd2 | |- ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 101 | 99 100 | syl | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 102 | 101 | fveq2d | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 103 | df-ov | |- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
|
| 104 | 102 103 | eqtr4di | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 105 | 96 104 | eqtrd | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 106 | ioombl | |- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) e. dom vol |
|
| 107 | 105 106 | eqeltrdi | |- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) e. dom vol ) |
| 108 | 107 | ralrimiva | |- ( ph -> A. n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol ) |
| 109 | finiunmbl | |- ( ( ( 1 ... N ) e. Fin /\ A. n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol ) -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol ) |
|
| 110 | 93 108 109 | syl2anc | |- ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol ) |
| 111 | 92 110 | eqeltrrd | |- ( ph -> L e. dom vol ) |
| 112 | mblsplit | |- ( ( L e. dom vol /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` K ) = ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) ) |
|
| 113 | 111 34 42 112 | syl3anc | |- ( ph -> ( vol* ` K ) = ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) ) |
| 114 | 113 | oveq1d | |- ( ph -> ( ( vol* ` K ) + C ) = ( ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) + C ) ) |
| 115 | 80 114 | eqtr4d | |- ( ph -> ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) = ( ( vol* ` K ) + C ) ) |
| 116 | 76 115 | breqtrd | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( vol* ` K ) + C ) ) |
| 117 | 5 49 | readdcld | |- ( ph -> ( ( vol* ` E ) + C ) e. RR ) |
| 118 | 9 | ovollb | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ K C_ U. ran ( (,) o. G ) ) -> ( vol* ` K ) <_ sup ( ran T , RR* , < ) ) |
| 119 | 7 33 118 | sylancl | |- ( ph -> ( vol* ` K ) <_ sup ( ran T , RR* , < ) ) |
| 120 | 42 35 117 119 10 | letrd | |- ( ph -> ( vol* ` K ) <_ ( ( vol* ` E ) + C ) ) |
| 121 | 42 117 49 120 | leadd1dd | |- ( ph -> ( ( vol* ` K ) + C ) <_ ( ( ( vol* ` E ) + C ) + C ) ) |
| 122 | 5 | recnd | |- ( ph -> ( vol* ` E ) e. CC ) |
| 123 | 122 78 78 | addassd | |- ( ph -> ( ( ( vol* ` E ) + C ) + C ) = ( ( vol* ` E ) + ( C + C ) ) ) |
| 124 | 121 123 | breqtrd | |- ( ph -> ( ( vol* ` K ) + C ) <_ ( ( vol* ` E ) + ( C + C ) ) ) |
| 125 | 48 59 58 116 124 | letrd | |- ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( vol* ` E ) + ( C + C ) ) ) |
| 126 | 48 58 50 125 | leadd1dd | |- ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) <_ ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) ) |
| 127 | 50 | recnd | |- ( ph -> ( C + C ) e. CC ) |
| 128 | 122 127 127 | addassd | |- ( ph -> ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) = ( ( vol* ` E ) + ( ( C + C ) + ( C + C ) ) ) ) |
| 129 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 130 | 129 | oveq1i | |- ( ( 2 x. 2 ) x. C ) = ( 4 x. C ) |
| 131 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 132 | 131 131 78 | mulassd | |- ( ph -> ( ( 2 x. 2 ) x. C ) = ( 2 x. ( 2 x. C ) ) ) |
| 133 | 78 | 2timesd | |- ( ph -> ( 2 x. C ) = ( C + C ) ) |
| 134 | 133 | oveq2d | |- ( ph -> ( 2 x. ( 2 x. C ) ) = ( 2 x. ( C + C ) ) ) |
| 135 | 127 | 2timesd | |- ( ph -> ( 2 x. ( C + C ) ) = ( ( C + C ) + ( C + C ) ) ) |
| 136 | 132 134 135 | 3eqtrd | |- ( ph -> ( ( 2 x. 2 ) x. C ) = ( ( C + C ) + ( C + C ) ) ) |
| 137 | 130 136 | eqtr3id | |- ( ph -> ( 4 x. C ) = ( ( C + C ) + ( C + C ) ) ) |
| 138 | 137 | oveq2d | |- ( ph -> ( ( vol* ` E ) + ( 4 x. C ) ) = ( ( vol* ` E ) + ( ( C + C ) + ( C + C ) ) ) ) |
| 139 | 128 138 | eqtr4d | |- ( ph -> ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) = ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| 140 | 126 139 | breqtrd | |- ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
| 141 | 29 51 55 57 140 | letrd | |- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |