This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for intersection over union. Exercise 10 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indi | |- ( A i^i ( B u. C ) ) = ( ( A i^i B ) u. ( A i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi | |- ( ( x e. A /\ ( x e. B \/ x e. C ) ) <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ x e. C ) ) ) |
|
| 2 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 3 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
| 4 | 2 3 | orbi12i | |- ( ( x e. ( A i^i B ) \/ x e. ( A i^i C ) ) <-> ( ( x e. A /\ x e. B ) \/ ( x e. A /\ x e. C ) ) ) |
| 5 | 1 4 | bitr4i | |- ( ( x e. A /\ ( x e. B \/ x e. C ) ) <-> ( x e. ( A i^i B ) \/ x e. ( A i^i C ) ) ) |
| 6 | elun | |- ( x e. ( B u. C ) <-> ( x e. B \/ x e. C ) ) |
|
| 7 | 6 | anbi2i | |- ( ( x e. A /\ x e. ( B u. C ) ) <-> ( x e. A /\ ( x e. B \/ x e. C ) ) ) |
| 8 | elun | |- ( x e. ( ( A i^i B ) u. ( A i^i C ) ) <-> ( x e. ( A i^i B ) \/ x e. ( A i^i C ) ) ) |
|
| 9 | 5 7 8 | 3bitr4i | |- ( ( x e. A /\ x e. ( B u. C ) ) <-> x e. ( ( A i^i B ) u. ( A i^i C ) ) ) |
| 10 | 9 | ineqri | |- ( A i^i ( B u. C ) ) = ( ( A i^i B ) u. ( A i^i C ) ) |