This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set ( 1 ... N ) has N elements. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | 1 | cardfz | |- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) |
| 3 | 2 | fveq2d | |- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) ) |
| 4 | fzfid | |- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
|
| 5 | 1 | hashgval | |- ( ( 1 ... N ) e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( # ` ( 1 ... N ) ) ) |
| 6 | 4 5 | syl | |- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( # ` ( 1 ... N ) ) ) |
| 7 | 1 | hashgf1o | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
| 8 | f1ocnvfv2 | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ N e. NN0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) = N ) |
|
| 9 | 7 8 | mpan | |- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) = N ) |
| 10 | 3 6 9 | 3eqtr3d | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |