This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of constant terms ( k is not free in B ). (Contributed by NM, 24-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumconst | |- ( ( A e. Fin /\ B e. CC ) -> sum_ k e. A B = ( ( # ` A ) x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul02 | |- ( B e. CC -> ( 0 x. B ) = 0 ) |
|
| 2 | 1 | adantl | |- ( ( A e. Fin /\ B e. CC ) -> ( 0 x. B ) = 0 ) |
| 3 | 2 | eqcomd | |- ( ( A e. Fin /\ B e. CC ) -> 0 = ( 0 x. B ) ) |
| 4 | sumeq1 | |- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
|
| 5 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( A = (/) -> sum_ k e. A B = 0 ) |
| 7 | fveq2 | |- ( A = (/) -> ( # ` A ) = ( # ` (/) ) ) |
|
| 8 | hash0 | |- ( # ` (/) ) = 0 |
|
| 9 | 7 8 | eqtrdi | |- ( A = (/) -> ( # ` A ) = 0 ) |
| 10 | 9 | oveq1d | |- ( A = (/) -> ( ( # ` A ) x. B ) = ( 0 x. B ) ) |
| 11 | 6 10 | eqeq12d | |- ( A = (/) -> ( sum_ k e. A B = ( ( # ` A ) x. B ) <-> 0 = ( 0 x. B ) ) ) |
| 12 | 3 11 | syl5ibrcom | |- ( ( A e. Fin /\ B e. CC ) -> ( A = (/) -> sum_ k e. A B = ( ( # ` A ) x. B ) ) ) |
| 13 | eqidd | |- ( k = ( f ` n ) -> B = B ) |
|
| 14 | simprl | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 15 | simprr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 16 | simpllr | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
|
| 17 | simplr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> B e. CC ) |
|
| 18 | elfznn | |- ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) |
|
| 19 | fvconst2g | |- ( ( B e. CC /\ n e. NN ) -> ( ( NN X. { B } ) ` n ) = B ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { B } ) ` n ) = B ) |
| 21 | 13 14 15 16 20 | fsum | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B = ( seq 1 ( + , ( NN X. { B } ) ) ` ( # ` A ) ) ) |
| 22 | ser1const | |- ( ( B e. CC /\ ( # ` A ) e. NN ) -> ( seq 1 ( + , ( NN X. { B } ) ) ` ( # ` A ) ) = ( ( # ` A ) x. B ) ) |
|
| 23 | 22 | ad2ant2lr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( + , ( NN X. { B } ) ) ` ( # ` A ) ) = ( ( # ` A ) x. B ) ) |
| 24 | 21 23 | eqtrd | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B = ( ( # ` A ) x. B ) ) |
| 25 | 24 | expr | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A B = ( ( # ` A ) x. B ) ) ) |
| 26 | 25 | exlimdv | |- ( ( ( A e. Fin /\ B e. CC ) /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A B = ( ( # ` A ) x. B ) ) ) |
| 27 | 26 | expimpd | |- ( ( A e. Fin /\ B e. CC ) -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A B = ( ( # ` A ) x. B ) ) ) |
| 28 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 29 | 28 | adantr | |- ( ( A e. Fin /\ B e. CC ) -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 30 | 12 27 29 | mpjaod | |- ( ( A e. Fin /\ B e. CC ) -> sum_ k e. A B = ( ( # ` A ) x. B ) ) |