This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjss2 | |- ( A. x e. A B C_ C -> ( Disj_ x e. A C -> Disj_ x e. A B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( B C_ C -> ( y e. B -> y e. C ) ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A B C_ C -> A. x e. A ( y e. B -> y e. C ) ) |
| 3 | rmoim | |- ( A. x e. A ( y e. B -> y e. C ) -> ( E* x e. A y e. C -> E* x e. A y e. B ) ) |
|
| 4 | 2 3 | syl | |- ( A. x e. A B C_ C -> ( E* x e. A y e. C -> E* x e. A y e. B ) ) |
| 5 | 4 | alimdv | |- ( A. x e. A B C_ C -> ( A. y E* x e. A y e. C -> A. y E* x e. A y e. B ) ) |
| 6 | df-disj | |- ( Disj_ x e. A C <-> A. y E* x e. A y e. C ) |
|
| 7 | df-disj | |- ( Disj_ x e. A B <-> A. y E* x e. A y e. B ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( A. x e. A B C_ C -> ( Disj_ x e. A C -> Disj_ x e. A B ) ) |