This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mblsplit | |- ( ( A e. dom vol /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | 1 | elpw2 | |- ( B e. ~P RR <-> B C_ RR ) |
| 3 | ismbl | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
|
| 4 | fveq2 | |- ( x = B -> ( vol* ` x ) = ( vol* ` B ) ) |
|
| 5 | 4 | eleq1d | |- ( x = B -> ( ( vol* ` x ) e. RR <-> ( vol* ` B ) e. RR ) ) |
| 6 | ineq1 | |- ( x = B -> ( x i^i A ) = ( B i^i A ) ) |
|
| 7 | 6 | fveq2d | |- ( x = B -> ( vol* ` ( x i^i A ) ) = ( vol* ` ( B i^i A ) ) ) |
| 8 | difeq1 | |- ( x = B -> ( x \ A ) = ( B \ A ) ) |
|
| 9 | 8 | fveq2d | |- ( x = B -> ( vol* ` ( x \ A ) ) = ( vol* ` ( B \ A ) ) ) |
| 10 | 7 9 | oveq12d | |- ( x = B -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) |
| 11 | 4 10 | eqeq12d | |- ( x = B -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) ) |
| 12 | 5 11 | imbi12d | |- ( x = B -> ( ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( ( vol* ` B ) e. RR -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) ) ) |
| 13 | 12 | rspccv | |- ( A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) -> ( B e. ~P RR -> ( ( vol* ` B ) e. RR -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) ) ) |
| 14 | 3 13 | simplbiim | |- ( A e. dom vol -> ( B e. ~P RR -> ( ( vol* ` B ) e. RR -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) ) ) |
| 15 | 2 14 | biimtrrid | |- ( A e. dom vol -> ( B C_ RR -> ( ( vol* ` B ) e. RR -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) ) ) |
| 16 | 15 | 3imp | |- ( ( A e. dom vol /\ B C_ RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` B ) = ( ( vol* ` ( B i^i A ) ) + ( vol* ` ( B \ A ) ) ) ) |