This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioombl | |- ( A (,) B ) e. dom vol |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snunioo | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 3 | 2 | adantrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 4 | lbico1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. ( A [,) B ) ) |
|
| 5 | 4 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A e. ( A [,) B ) ) |
| 6 | 5 | adantrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. ( A [,) B ) ) |
| 7 | 6 | snssd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } C_ ( A [,) B ) ) |
| 8 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A [,] A ) = { A } ) |
| 10 | 9 | ineq1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = ( { A } i^i ( A (,) B ) ) ) |
| 11 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. RR* ) |
|
| 12 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> B e. RR* ) |
|
| 13 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 14 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 15 | xrltnle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
|
| 16 | 13 14 15 | ixxdisj | |- ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = (/) ) |
| 17 | 11 11 12 16 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,] A ) i^i ( A (,) B ) ) = (/) ) |
| 18 | 10 17 | eqtr3d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( { A } i^i ( A (,) B ) ) = (/) ) |
| 19 | uneqdifeq | |- ( ( { A } C_ ( A [,) B ) /\ ( { A } i^i ( A (,) B ) ) = (/) ) -> ( ( { A } u. ( A (,) B ) ) = ( A [,) B ) <-> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) ) |
|
| 20 | 7 18 19 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( { A } u. ( A (,) B ) ) = ( A [,) B ) <-> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) ) |
| 21 | 3 20 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,) B ) \ { A } ) = ( A (,) B ) ) |
| 22 | mnfxr | |- -oo e. RR* |
|
| 23 | 22 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> -oo e. RR* ) |
| 24 | simprr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> -oo < A ) |
|
| 25 | simprl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A < B ) |
|
| 26 | xrre2 | |- ( ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( -oo < A /\ A < B ) ) -> A e. RR ) |
|
| 27 | 23 11 12 24 25 26 | syl32anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> A e. RR ) |
| 28 | icombl | |- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |
|
| 29 | 27 12 28 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A [,) B ) e. dom vol ) |
| 30 | 27 | snssd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } C_ RR ) |
| 31 | ovolsn | |- ( A e. RR -> ( vol* ` { A } ) = 0 ) |
|
| 32 | 27 31 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( vol* ` { A } ) = 0 ) |
| 33 | nulmbl | |- ( ( { A } C_ RR /\ ( vol* ` { A } ) = 0 ) -> { A } e. dom vol ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> { A } e. dom vol ) |
| 35 | difmbl | |- ( ( ( A [,) B ) e. dom vol /\ { A } e. dom vol ) -> ( ( A [,) B ) \ { A } ) e. dom vol ) |
|
| 36 | 29 34 35 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( ( A [,) B ) \ { A } ) e. dom vol ) |
| 37 | 21 36 | eqeltrrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < B /\ -oo < A ) ) -> ( A (,) B ) e. dom vol ) |
| 38 | 37 | expr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo < A -> ( A (,) B ) e. dom vol ) ) |
| 39 | uncom | |- ( ( B [,) +oo ) u. ( -oo (,) B ) ) = ( ( -oo (,) B ) u. ( B [,) +oo ) ) |
|
| 40 | 22 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo e. RR* ) |
| 41 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> B e. RR* ) |
|
| 42 | pnfxr | |- +oo e. RR* |
|
| 43 | 42 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) |
| 44 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A e. RR* ) |
|
| 45 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 46 | 45 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo <_ A ) |
| 47 | simpr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A < B ) |
|
| 48 | 40 44 41 46 47 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> -oo < B ) |
| 49 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 50 | 41 49 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) |
| 51 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 52 | xrlenlt | |- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
|
| 53 | xrltletr | |- ( ( w e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( w < B /\ B <_ +oo ) -> w < +oo ) ) |
|
| 54 | xrltletr | |- ( ( -oo e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( -oo < B /\ B <_ w ) -> -oo < w ) ) |
|
| 55 | 14 51 52 14 53 54 | ixxun | |- ( ( ( -oo e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( -oo < B /\ B <_ +oo ) ) -> ( ( -oo (,) B ) u. ( B [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 56 | 40 41 43 48 50 55 | syl32anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( -oo (,) B ) u. ( B [,) +oo ) ) = ( -oo (,) +oo ) ) |
| 57 | 39 56 | eqtrid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( -oo (,) B ) ) = ( -oo (,) +oo ) ) |
| 58 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 59 | 57 58 | eqtrdi | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR ) |
| 60 | ssun1 | |- ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( -oo (,) B ) ) |
|
| 61 | 60 59 | sseqtrid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ RR ) |
| 62 | incom | |- ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = ( ( -oo (,) B ) i^i ( B [,) +oo ) ) |
|
| 63 | 14 51 52 | ixxdisj | |- ( ( -oo e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( -oo (,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 64 | 40 41 43 63 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( -oo (,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 65 | 62 64 | eqtrid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = (/) ) |
| 66 | uneqdifeq | |- ( ( ( B [,) +oo ) C_ RR /\ ( ( B [,) +oo ) i^i ( -oo (,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR <-> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) ) |
|
| 67 | 61 65 66 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( -oo (,) B ) ) = RR <-> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) ) |
| 68 | 59 67 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( RR \ ( B [,) +oo ) ) = ( -oo (,) B ) ) |
| 69 | rembl | |- RR e. dom vol |
|
| 70 | xrleloe | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
|
| 71 | 41 42 70 | sylancl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 72 | 50 71 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) |
| 73 | xrre2 | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
|
| 74 | 73 | expr | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 75 | 42 74 | mp3anl3 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 76 | 75 | orim1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) |
| 77 | 72 76 | mpd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) |
| 78 | icombl1 | |- ( B e. RR -> ( B [,) +oo ) e. dom vol ) |
|
| 79 | oveq1 | |- ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) |
|
| 80 | pnfge | |- ( +oo e. RR* -> +oo <_ +oo ) |
|
| 81 | 42 80 | ax-mp | |- +oo <_ +oo |
| 82 | ico0 | |- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) |
|
| 83 | 42 42 82 | mp2an | |- ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) |
| 84 | 81 83 | mpbir | |- ( +oo [,) +oo ) = (/) |
| 85 | 79 84 | eqtrdi | |- ( B = +oo -> ( B [,) +oo ) = (/) ) |
| 86 | 0mbl | |- (/) e. dom vol |
|
| 87 | 85 86 | eqeltrdi | |- ( B = +oo -> ( B [,) +oo ) e. dom vol ) |
| 88 | 78 87 | jaoi | |- ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) |
| 89 | 77 88 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) |
| 90 | difmbl | |- ( ( RR e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( RR \ ( B [,) +oo ) ) e. dom vol ) |
|
| 91 | 69 89 90 | sylancr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( RR \ ( B [,) +oo ) ) e. dom vol ) |
| 92 | 68 91 | eqeltrrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo (,) B ) e. dom vol ) |
| 93 | oveq1 | |- ( -oo = A -> ( -oo (,) B ) = ( A (,) B ) ) |
|
| 94 | 93 | eleq1d | |- ( -oo = A -> ( ( -oo (,) B ) e. dom vol <-> ( A (,) B ) e. dom vol ) ) |
| 95 | 92 94 | syl5ibcom | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo = A -> ( A (,) B ) e. dom vol ) ) |
| 96 | xrleloe | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
|
| 97 | 22 44 96 | sylancr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
| 98 | 46 97 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( -oo < A \/ -oo = A ) ) |
| 99 | 38 95 98 | mpjaod | |- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> ( A (,) B ) e. dom vol ) |
| 100 | ioo0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
|
| 101 | xrlenlt | |- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
|
| 102 | 101 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 103 | 100 102 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> -. A < B ) ) |
| 104 | 103 | biimpar | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A < B ) -> ( A (,) B ) = (/) ) |
| 105 | 104 86 | eqeltrdi | |- ( ( ( A e. RR* /\ B e. RR* ) /\ -. A < B ) -> ( A (,) B ) e. dom vol ) |
| 106 | 99 105 | pm2.61dan | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. dom vol ) |
| 107 | ndmioo | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
|
| 108 | 107 86 | eqeltrdi | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) e. dom vol ) |
| 109 | 106 108 | pm2.61i | |- ( A (,) B ) e. dom vol |