This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjss1 | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 2 | 1 | anim1d | |- ( A C_ B -> ( ( x e. A /\ y e. C ) -> ( x e. B /\ y e. C ) ) ) |
| 3 | 2 | moimdv | |- ( A C_ B -> ( E* x ( x e. B /\ y e. C ) -> E* x ( x e. A /\ y e. C ) ) ) |
| 4 | 3 | alimdv | |- ( A C_ B -> ( A. y E* x ( x e. B /\ y e. C ) -> A. y E* x ( x e. A /\ y e. C ) ) ) |
| 5 | dfdisj2 | |- ( Disj_ x e. B C <-> A. y E* x ( x e. B /\ y e. C ) ) |
|
| 6 | dfdisj2 | |- ( Disj_ x e. A C <-> A. y E* x ( x e. A /\ y e. C ) ) |
|
| 7 | 4 5 6 | 3imtr4g | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |