This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzdisj | |- ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k e. ( ZZ>= ` N ) ) |
|
| 2 | eluzle | |- ( k e. ( ZZ>= ` N ) -> N <_ k ) |
|
| 3 | 1 2 | syl | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> N <_ k ) |
| 4 | eluzel2 | |- ( k e. ( ZZ>= ` N ) -> N e. ZZ ) |
|
| 5 | 1 4 | syl | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> N e. ZZ ) |
| 6 | eluzelz | |- ( k e. ( ZZ>= ` N ) -> k e. ZZ ) |
|
| 7 | 1 6 | syl | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k e. ZZ ) |
| 8 | zlem1lt | |- ( ( N e. ZZ /\ k e. ZZ ) -> ( N <_ k <-> ( N - 1 ) < k ) ) |
|
| 9 | 5 7 8 | syl2anc | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> ( N <_ k <-> ( N - 1 ) < k ) ) |
| 10 | 3 9 | mpbid | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> ( N - 1 ) < k ) |
| 11 | 7 | zred | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k e. RR ) |
| 12 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 13 | 5 12 | syl | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> ( N - 1 ) e. ZZ ) |
| 14 | 13 | zred | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> ( N - 1 ) e. RR ) |
| 15 | elinel1 | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k e. ( M ... ( N - 1 ) ) ) |
|
| 16 | elfzle2 | |- ( k e. ( M ... ( N - 1 ) ) -> k <_ ( N - 1 ) ) |
|
| 17 | 15 16 | syl | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k <_ ( N - 1 ) ) |
| 18 | 11 14 17 | lensymd | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> -. ( N - 1 ) < k ) |
| 19 | 10 18 | pm2.21dd | |- ( k e. ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) -> k e. (/) ) |
| 20 | 19 | ssriv | |- ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) C_ (/) |
| 21 | ss0 | |- ( ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) C_ (/) -> ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) = (/) ) |
|
| 22 | 20 21 | ax-mp | |- ( ( M ... ( N - 1 ) ) i^i ( ZZ>= ` N ) ) = (/) |