This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
| aspval.v | |- V = ( Base ` W ) |
||
| Assertion | aspsubrg | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval.v | |- V = ( Base ` W ) |
|
| 3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 4 | 1 2 3 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
| 5 | ssrab2 | |- { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) |
|
| 6 | inss1 | |- ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) C_ ( SubRing ` W ) |
|
| 7 | 5 6 | sstri | |- { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) |
| 8 | fvex | |- ( A ` S ) e. _V |
|
| 9 | 4 8 | eqeltrrdi | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) |
| 10 | intex | |- ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. _V ) |
|
| 11 | 9 10 | sylibr | |- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) |
| 12 | subrgint | |- ( ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ ( SubRing ` W ) /\ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) |
|
| 13 | 7 11 12 | sylancr | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } e. ( SubRing ` W ) ) |
| 14 | 4 13 | eqeltrd | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. ( SubRing ` W ) ) |