This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsubmcl.z | |- .0. = ( 0g ` G ) |
|
| gsumsubmcl.g | |- ( ph -> G e. CMnd ) |
||
| gsumsubmcl.a | |- ( ph -> A e. V ) |
||
| gsumsubmcl.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
||
| gsumsubmcl.f | |- ( ph -> F : A --> S ) |
||
| gsumsubmcl.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumsubmcl | |- ( ph -> ( G gsum F ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsubmcl.z | |- .0. = ( 0g ` G ) |
|
| 2 | gsumsubmcl.g | |- ( ph -> G e. CMnd ) |
|
| 3 | gsumsubmcl.a | |- ( ph -> A e. V ) |
|
| 4 | gsumsubmcl.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
|
| 5 | gsumsubmcl.f | |- ( ph -> F : A --> S ) |
|
| 6 | gsumsubmcl.w | |- ( ph -> F finSupp .0. ) |
|
| 7 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 8 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 9 | 2 8 | syl | |- ( ph -> G e. Mnd ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 10 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 12 | 4 11 | syl | |- ( ph -> S C_ ( Base ` G ) ) |
| 13 | 5 12 | fssd | |- ( ph -> F : A --> ( Base ` G ) ) |
| 14 | 10 7 2 13 | cntzcmnf | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 15 | 1 7 9 3 4 5 14 6 | gsumzsubmcl | |- ( ph -> ( G gsum F ) e. S ) |