This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslss.x | |- X = ( W |`s U ) |
|
| lsslss.s | |- S = ( LSubSp ` W ) |
||
| lsslss.t | |- T = ( LSubSp ` X ) |
||
| Assertion | lsslss | |- ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V e. S /\ V C_ U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslss.x | |- X = ( W |`s U ) |
|
| 2 | lsslss.s | |- S = ( LSubSp ` W ) |
|
| 3 | lsslss.t | |- T = ( LSubSp ` X ) |
|
| 4 | 1 2 | lsslmod | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
| 5 | eqid | |- ( X |`s V ) = ( X |`s V ) |
|
| 6 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 7 | 5 6 3 | islss3 | |- ( X e. LMod -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
| 8 | 4 7 | syl | |- ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
| 9 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 10 | 9 2 | lssss | |- ( U e. S -> U C_ ( Base ` W ) ) |
| 11 | 10 | adantl | |- ( ( W e. LMod /\ U e. S ) -> U C_ ( Base ` W ) ) |
| 12 | 1 9 | ressbas2 | |- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
| 13 | 11 12 | syl | |- ( ( W e. LMod /\ U e. S ) -> U = ( Base ` X ) ) |
| 14 | 13 | sseq2d | |- ( ( W e. LMod /\ U e. S ) -> ( V C_ U <-> V C_ ( Base ` X ) ) ) |
| 15 | 14 | anbi1d | |- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ ( Base ` X ) /\ ( X |`s V ) e. LMod ) ) ) |
| 16 | sstr2 | |- ( V C_ U -> ( U C_ ( Base ` W ) -> V C_ ( Base ` W ) ) ) |
|
| 17 | 11 16 | mpan9 | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> V C_ ( Base ` W ) ) |
| 18 | 17 | biantrurd | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s V ) e. LMod <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
| 19 | 1 | oveq1i | |- ( X |`s V ) = ( ( W |`s U ) |`s V ) |
| 20 | ressabs | |- ( ( U e. S /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) |
|
| 21 | 20 | adantll | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( W |`s U ) |`s V ) = ( W |`s V ) ) |
| 22 | 19 21 | eqtrid | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( X |`s V ) = ( W |`s V ) ) |
| 23 | 22 | eleq1d | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> ( W |`s V ) e. LMod ) ) |
| 24 | eqid | |- ( W |`s V ) = ( W |`s V ) |
|
| 25 | 24 9 2 | islss3 | |- ( W e. LMod -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
| 26 | 25 | ad2antrr | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( V e. S <-> ( V C_ ( Base ` W ) /\ ( W |`s V ) e. LMod ) ) ) |
| 27 | 18 23 26 | 3bitr4d | |- ( ( ( W e. LMod /\ U e. S ) /\ V C_ U ) -> ( ( X |`s V ) e. LMod <-> V e. S ) ) |
| 28 | 27 | pm5.32da | |- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V C_ U /\ V e. S ) ) ) |
| 29 | 28 | biancomd | |- ( ( W e. LMod /\ U e. S ) -> ( ( V C_ U /\ ( X |`s V ) e. LMod ) <-> ( V e. S /\ V C_ U ) ) ) |
| 30 | 8 15 29 | 3bitr2d | |- ( ( W e. LMod /\ U e. S ) -> ( V e. T <-> ( V e. S /\ V C_ U ) ) ) |