This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
| aspval.v | |- V = ( Base ` W ) |
||
| aspval.l | |- L = ( LSubSp ` W ) |
||
| Assertion | asplss | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval.v | |- V = ( Base ` W ) |
|
| 3 | aspval.l | |- L = ( LSubSp ` W ) |
|
| 4 | 1 2 3 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 5 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 6 | 5 | adantr | |- ( ( W e. AssAlg /\ S C_ V ) -> W e. LMod ) |
| 7 | ssrab2 | |- { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ ( ( SubRing ` W ) i^i L ) |
|
| 8 | inss2 | |- ( ( SubRing ` W ) i^i L ) C_ L |
|
| 9 | 7 8 | sstri | |- { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L |
| 10 | 9 | a1i | |- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L ) |
| 11 | fvex | |- ( A ` S ) e. _V |
|
| 12 | 4 11 | eqeltrrdi | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
| 13 | intex | |- ( { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) <-> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. _V ) |
|
| 14 | 12 13 | sylibr | |- ( ( W e. AssAlg /\ S C_ V ) -> { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) ) |
| 15 | 3 | lssintcl | |- ( ( W e. LMod /\ { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } C_ L /\ { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } =/= (/) ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. L ) |
| 16 | 6 10 14 15 | syl3anc | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } e. L ) |
| 17 | 4 16 | eqeltrd | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) e. L ) |