This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | |- P = ( I mPoly R ) |
|
| Assertion | mplcrng | |- ( ( I e. V /\ R e. CRing ) -> P e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | |- P = ( I mPoly R ) |
|
| 2 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 3 | simpl | |- ( ( I e. V /\ R e. CRing ) -> I e. V ) |
|
| 4 | simpr | |- ( ( I e. V /\ R e. CRing ) -> R e. CRing ) |
|
| 5 | 2 3 4 | psrcrng | |- ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. CRing ) |
| 6 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 7 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 8 | 7 | adantl | |- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
| 9 | 2 1 6 3 8 | mplsubrg | |- ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 10 | 1 2 6 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 11 | 10 | subrgcrng | |- ( ( ( I mPwSer R ) e. CRing /\ ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) -> P e. CRing ) |
| 12 | 5 9 11 | syl2anc | |- ( ( I e. V /\ R e. CRing ) -> P e. CRing ) |