This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
| aspval.v | |- V = ( Base ` W ) |
||
| Assertion | aspss | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) C_ ( A ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval.v | |- V = ( Base ` W ) |
|
| 3 | simpl3 | |- ( ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) /\ t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) ) -> T C_ S ) |
|
| 4 | sstr2 | |- ( T C_ S -> ( S C_ t -> T C_ t ) ) |
|
| 5 | 3 4 | syl | |- ( ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) /\ t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) ) -> ( S C_ t -> T C_ t ) ) |
| 6 | 5 | ss2rabdv | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } ) |
| 7 | intss | |- ( { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } C_ { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
|
| 8 | 6 7 | syl | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } C_ |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
| 9 | simp1 | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> W e. AssAlg ) |
|
| 10 | simp3 | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> T C_ S ) |
|
| 11 | simp2 | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> S C_ V ) |
|
| 12 | 10 11 | sstrd | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> T C_ V ) |
| 13 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 14 | 1 2 13 | aspval | |- ( ( W e. AssAlg /\ T C_ V ) -> ( A ` T ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } ) |
| 15 | 9 12 14 | syl2anc | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | T C_ t } ) |
| 16 | 1 2 13 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
| 17 | 16 | 3adant3 | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ t } ) |
| 18 | 8 15 17 | 3sstr4d | |- ( ( W e. AssAlg /\ S C_ V /\ T C_ S ) -> ( A ` T ) C_ ( A ` S ) ) |