This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | |- S = ( I mPwSer R ) |
|
| psrring.i | |- ( ph -> I e. V ) |
||
| psrring.r | |- ( ph -> R e. Ring ) |
||
| Assertion | psrlmod | |- ( ph -> S e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | |- S = ( I mPwSer R ) |
|
| 2 | psrring.i | |- ( ph -> I e. V ) |
|
| 3 | psrring.r | |- ( ph -> R e. Ring ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
|
| 5 | eqidd | |- ( ph -> ( +g ` S ) = ( +g ` S ) ) |
|
| 6 | 1 2 3 | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| 7 | eqidd | |- ( ph -> ( .s ` S ) = ( .s ` S ) ) |
|
| 8 | eqidd | |- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
|
| 9 | eqidd | |- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
|
| 10 | eqidd | |- ( ph -> ( .r ` R ) = ( .r ` R ) ) |
|
| 11 | eqidd | |- ( ph -> ( 1r ` R ) = ( 1r ` R ) ) |
|
| 12 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 13 | 3 12 | syl | |- ( ph -> R e. Grp ) |
| 14 | 1 2 13 | psrgrp | |- ( ph -> S e. Grp ) |
| 15 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 16 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 17 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 18 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` S ) ) -> R e. Ring ) |
| 19 | simp2 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` R ) ) |
|
| 20 | simp3 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
|
| 21 | 1 15 16 17 18 19 20 | psrvscacl | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` S ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) |
| 22 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 23 | 22 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 24 | 23 | a1i | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 25 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` R ) ) |
|
| 26 | fconst6g | |- ( x e. ( Base ` R ) -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 28 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 29 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
|
| 30 | 1 16 28 17 29 | psrelbas | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 31 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) |
|
| 32 | 1 16 28 17 31 | psrelbas | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 33 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) |
| 34 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 35 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 36 | 16 34 35 | ringdi | |- ( ( R e. Ring /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( r ( .r ` R ) ( s ( +g ` R ) t ) ) = ( ( r ( .r ` R ) s ) ( +g ` R ) ( r ( .r ` R ) t ) ) ) |
| 37 | 33 36 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( r ( .r ` R ) ( s ( +g ` R ) t ) ) = ( ( r ( .r ` R ) s ) ( +g ` R ) ( r ( .r ` R ) t ) ) ) |
| 38 | 24 27 30 32 37 | caofdi | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y oF ( +g ` R ) z ) ) = ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) y ) oF ( +g ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) ) ) |
| 39 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 40 | 1 17 34 39 29 31 | psradd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( +g ` S ) z ) = ( y oF ( +g ` R ) z ) ) |
| 41 | 40 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( +g ` S ) z ) ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y oF ( +g ` R ) z ) ) ) |
| 42 | 1 15 16 17 35 28 25 29 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) y ) ) |
| 43 | 1 15 16 17 35 28 25 31 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) ) |
| 44 | 42 43 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) y ) oF ( +g ` R ) ( x ( .s ` S ) z ) ) = ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) y ) oF ( +g ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) ) ) |
| 45 | 38 41 44 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( +g ` S ) z ) ) = ( ( x ( .s ` S ) y ) oF ( +g ` R ) ( x ( .s ` S ) z ) ) ) |
| 46 | 13 | grpmgmd | |- ( ph -> R e. Mgm ) |
| 47 | 46 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Mgm ) |
| 48 | 1 17 39 47 29 31 | psraddcl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( +g ` S ) z ) e. ( Base ` S ) ) |
| 49 | 1 15 16 17 35 28 25 48 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) ( y ( +g ` S ) z ) ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( +g ` S ) z ) ) ) |
| 50 | 21 | 3adant3r3 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) y ) e. ( Base ` S ) ) |
| 51 | 1 15 16 17 33 25 31 | psrvscacl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) z ) e. ( Base ` S ) ) |
| 52 | 1 17 34 39 50 51 | psradd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) y ) ( +g ` S ) ( x ( .s ` S ) z ) ) = ( ( x ( .s ` S ) y ) oF ( +g ` R ) ( x ( .s ` S ) z ) ) ) |
| 53 | 45 49 52 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) ( y ( +g ` S ) z ) ) = ( ( x ( .s ` S ) y ) ( +g ` S ) ( x ( .s ` S ) z ) ) ) |
| 54 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` R ) ) |
|
| 55 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) |
|
| 56 | 1 15 16 17 35 28 54 55 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) ) |
| 57 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` R ) ) |
|
| 58 | 1 15 16 17 35 28 57 55 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( y ( .s ` S ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) oF ( .r ` R ) z ) ) |
| 59 | 56 58 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) z ) oF ( +g ` R ) ( y ( .s ` S ) z ) ) = ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) oF ( +g ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) oF ( .r ` R ) z ) ) ) |
| 60 | 23 | a1i | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 61 | 1 16 28 17 55 | psrelbas | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> z : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 62 | 54 26 | syl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 63 | fconst6g | |- ( y e. ( Base ` R ) -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
|
| 64 | 57 63 | syl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 65 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) |
| 66 | 16 34 35 | ringdir | |- ( ( R e. Ring /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( +g ` R ) s ) ( .r ` R ) t ) = ( ( r ( .r ` R ) t ) ( +g ` R ) ( s ( .r ` R ) t ) ) ) |
| 67 | 65 66 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( +g ` R ) s ) ( .r ` R ) t ) = ( ( r ( .r ` R ) t ) ( +g ` R ) ( s ( .r ` R ) t ) ) ) |
| 68 | 60 61 62 64 67 | caofdir | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( +g ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) oF ( .r ` R ) z ) = ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) z ) oF ( +g ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) oF ( .r ` R ) z ) ) ) |
| 69 | 60 54 57 | ofc12 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( +g ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) = ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( +g ` R ) y ) } ) ) |
| 70 | 69 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( +g ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) oF ( .r ` R ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( +g ` R ) y ) } ) oF ( .r ` R ) z ) ) |
| 71 | 59 68 70 | 3eqtr2rd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( +g ` R ) y ) } ) oF ( .r ` R ) z ) = ( ( x ( .s ` S ) z ) oF ( +g ` R ) ( y ( .s ` S ) z ) ) ) |
| 72 | 16 34 | ringacl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 73 | 65 54 57 72 | syl3anc | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 74 | 1 15 16 17 35 28 73 55 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` R ) y ) ( .s ` S ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( +g ` R ) y ) } ) oF ( .r ` R ) z ) ) |
| 75 | 1 15 16 17 65 54 55 | psrvscacl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) z ) e. ( Base ` S ) ) |
| 76 | 1 15 16 17 65 57 55 | psrvscacl | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( y ( .s ` S ) z ) e. ( Base ` S ) ) |
| 77 | 1 17 34 39 75 76 | psradd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) z ) ( +g ` S ) ( y ( .s ` S ) z ) ) = ( ( x ( .s ` S ) z ) oF ( +g ` R ) ( y ( .s ` S ) z ) ) ) |
| 78 | 71 74 77 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` R ) y ) ( .s ` S ) z ) = ( ( x ( .s ` S ) z ) ( +g ` S ) ( y ( .s ` S ) z ) ) ) |
| 79 | 58 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( .s ` S ) z ) ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) oF ( .r ` R ) z ) ) ) |
| 80 | 16 35 | ringass | |- ( ( R e. Ring /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( .r ` R ) s ) ( .r ` R ) t ) = ( r ( .r ` R ) ( s ( .r ` R ) t ) ) ) |
| 81 | 65 80 | sylan | |- ( ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( .r ` R ) s ) ( .r ` R ) t ) = ( r ( .r ` R ) ( s ( .r ` R ) t ) ) ) |
| 82 | 60 62 64 61 81 | caofass | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) oF ( .r ` R ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) oF ( .r ` R ) z ) ) ) |
| 83 | 60 54 57 | ofc12 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) = ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( .r ` R ) y ) } ) ) |
| 84 | 83 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { y } ) ) oF ( .r ` R ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( .r ` R ) y ) } ) oF ( .r ` R ) z ) ) |
| 85 | 79 82 84 | 3eqtr2rd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( .r ` R ) y ) } ) oF ( .r ` R ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( .s ` S ) z ) ) ) |
| 86 | 16 35 | ringcl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 87 | 65 54 57 86 | syl3anc | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 88 | 1 15 16 17 35 28 87 55 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .r ` R ) y ) ( .s ` S ) z ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( x ( .r ` R ) y ) } ) oF ( .r ` R ) z ) ) |
| 89 | 1 15 16 17 35 28 54 76 | psrvsca | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( x ( .s ` S ) ( y ( .s ` S ) z ) ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { x } ) oF ( .r ` R ) ( y ( .s ` S ) z ) ) ) |
| 90 | 85 88 89 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .r ` R ) y ) ( .s ` S ) z ) = ( x ( .s ` S ) ( y ( .s ` S ) z ) ) ) |
| 91 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` S ) ) -> R e. Ring ) |
| 92 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 93 | 16 92 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 94 | 91 93 | syl | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 95 | simpr | |- ( ( ph /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
|
| 96 | 1 15 16 17 35 28 94 95 | psrvsca | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( 1r ` R ) ( .s ` S ) x ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( 1r ` R ) } ) oF ( .r ` R ) x ) ) |
| 97 | 23 | a1i | |- ( ( ph /\ x e. ( Base ` S ) ) -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 98 | 1 16 28 17 95 | psrelbas | |- ( ( ph /\ x e. ( Base ` S ) ) -> x : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 99 | 16 35 92 | ringlidm | |- ( ( R e. Ring /\ r e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) r ) = r ) |
| 100 | 91 99 | sylan | |- ( ( ( ph /\ x e. ( Base ` S ) ) /\ r e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) r ) = r ) |
| 101 | 97 98 94 100 | caofid0l | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( 1r ` R ) } ) oF ( .r ` R ) x ) = x ) |
| 102 | 96 101 | eqtrd | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( 1r ` R ) ( .s ` S ) x ) = x ) |
| 103 | 4 5 6 7 8 9 10 11 3 14 21 53 78 90 102 | islmodd | |- ( ph -> S e. LMod ) |