This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrg.s | |- S = ( R |`s A ) |
|
| Assertion | subsubrg | |- ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrg.s | |- S = ( R |`s A ) |
|
| 2 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 3 | 2 | adantr | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> R e. Ring ) |
| 4 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 5 | 4 | subrgss | |- ( B e. ( SubRing ` S ) -> B C_ ( Base ` S ) ) |
| 6 | 5 | adantl | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` S ) ) |
| 7 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 8 | 7 | adantr | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A = ( Base ` S ) ) |
| 9 | 6 8 | sseqtrrd | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ A ) |
| 10 | 1 | oveq1i | |- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
| 11 | ressabs | |- ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
|
| 12 | 10 11 | eqtrid | |- ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
| 13 | 9 12 | syldan | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 14 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 15 | 14 | subrgring | |- ( B e. ( SubRing ` S ) -> ( S |`s B ) e. Ring ) |
| 16 | 15 | adantl | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) e. Ring ) |
| 17 | 13 16 | eqeltrrd | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( R |`s B ) e. Ring ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | 18 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 20 | 19 | adantr | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A C_ ( Base ` R ) ) |
| 21 | 9 20 | sstrd | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` R ) ) |
| 22 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 23 | 1 22 | subrg1 | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 24 | 23 | adantr | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 25 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 26 | 25 | subrg1cl | |- ( B e. ( SubRing ` S ) -> ( 1r ` S ) e. B ) |
| 27 | 26 | adantl | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` S ) e. B ) |
| 28 | 24 27 | eqeltrd | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) e. B ) |
| 29 | 21 28 | jca | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) |
| 30 | 18 22 | issubrg | |- ( B e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s B ) e. Ring ) /\ ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) ) |
| 31 | 3 17 29 30 | syl21anbrc | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B e. ( SubRing ` R ) ) |
| 32 | 31 9 | jca | |- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B e. ( SubRing ` R ) /\ B C_ A ) ) |
| 33 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 34 | 33 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> S e. Ring ) |
| 35 | 12 | adantrl | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 36 | eqid | |- ( R |`s B ) = ( R |`s B ) |
|
| 37 | 36 | subrgring | |- ( B e. ( SubRing ` R ) -> ( R |`s B ) e. Ring ) |
| 38 | 37 | ad2antrl | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Ring ) |
| 39 | 35 38 | eqeltrd | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Ring ) |
| 40 | simprr | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ A ) |
|
| 41 | 7 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) |
| 42 | 40 41 | sseqtrd | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) |
| 43 | 23 | adantr | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 44 | 22 | subrg1cl | |- ( B e. ( SubRing ` R ) -> ( 1r ` R ) e. B ) |
| 45 | 44 | ad2antrl | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) e. B ) |
| 46 | 43 45 | eqeltrrd | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` S ) e. B ) |
| 47 | 42 46 | jca | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) |
| 48 | 4 25 | issubrg | |- ( B e. ( SubRing ` S ) <-> ( ( S e. Ring /\ ( S |`s B ) e. Ring ) /\ ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) ) |
| 49 | 34 39 47 48 | syl21anbrc | |- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B e. ( SubRing ` S ) ) |
| 50 | 32 49 | impbida | |- ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |