This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrgsubg | |- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 2 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 3 | 1 2 | syl | |- ( A e. ( SubRing ` R ) -> R e. Grp ) |
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 4 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 6 | eqid | |- ( R |`s A ) = ( R |`s A ) |
|
| 7 | 6 | subrgring | |- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
| 8 | ringgrp | |- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Grp ) |
|
| 9 | 7 8 | syl | |- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Grp ) |
| 10 | 4 | issubg | |- ( A e. ( SubGrp ` R ) <-> ( R e. Grp /\ A C_ ( Base ` R ) /\ ( R |`s A ) e. Grp ) ) |
| 11 | 3 5 9 10 | syl3anbrc | |- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |