This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | |- S = ( I mPwSer R ) |
|
| mplsubg.p | |- P = ( I mPoly R ) |
||
| mplsubg.u | |- U = ( Base ` P ) |
||
| mplsubg.i | |- ( ph -> I e. W ) |
||
| mpllss.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mplsubrg | |- ( ph -> U e. ( SubRing ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | |- S = ( I mPwSer R ) |
|
| 2 | mplsubg.p | |- P = ( I mPoly R ) |
|
| 3 | mplsubg.u | |- U = ( Base ` P ) |
|
| 4 | mplsubg.i | |- ( ph -> I e. W ) |
|
| 5 | mpllss.r | |- ( ph -> R e. Ring ) |
|
| 6 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 7 | 5 6 | syl | |- ( ph -> R e. Grp ) |
| 8 | 1 2 3 4 7 | mplsubg | |- ( ph -> U e. ( SubGrp ` S ) ) |
| 9 | 1 4 5 | psrring | |- ( ph -> S e. Ring ) |
| 10 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 11 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 12 | 10 11 | ringidcl | |- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 13 | 9 12 | syl | |- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 16 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 17 | 1 4 5 14 15 16 11 | psr1 | |- ( ph -> ( 1r ` S ) = ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 18 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 19 | 18 | mptrabex | |- ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. _V |
| 20 | funmpt | |- Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
|
| 21 | fvex | |- ( 0g ` R ) e. _V |
|
| 22 | 19 20 21 | 3pm3.2i | |- ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) /\ ( 0g ` R ) e. _V ) |
| 23 | 22 | a1i | |- ( ph -> ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) /\ ( 0g ` R ) e. _V ) ) |
| 24 | snfi | |- { ( I X. { 0 } ) } e. Fin |
|
| 25 | 24 | a1i | |- ( ph -> { ( I X. { 0 } ) } e. Fin ) |
| 26 | eldifsni | |- ( k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ { ( I X. { 0 } ) } ) -> k =/= ( I X. { 0 } ) ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ { ( I X. { 0 } ) } ) ) -> k =/= ( I X. { 0 } ) ) |
| 28 | ifnefalse | |- ( k =/= ( I X. { 0 } ) -> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
|
| 29 | 27 28 | syl | |- ( ( ph /\ k e. ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } \ { ( I X. { 0 } ) } ) ) -> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 30 | 18 | rabex | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 31 | 30 | a1i | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 32 | 29 31 | suppss2 | |- ( ph -> ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) supp ( 0g ` R ) ) C_ { ( I X. { 0 } ) } ) |
| 33 | suppssfifsupp | |- ( ( ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. _V /\ Fun ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) /\ ( 0g ` R ) e. _V ) /\ ( { ( I X. { 0 } ) } e. Fin /\ ( ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) supp ( 0g ` R ) ) C_ { ( I X. { 0 } ) } ) ) -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) |
|
| 34 | 23 25 32 33 | syl12anc | |- ( ph -> ( k e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( k = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) finSupp ( 0g ` R ) ) |
| 35 | 17 34 | eqbrtrd | |- ( ph -> ( 1r ` S ) finSupp ( 0g ` R ) ) |
| 36 | 2 1 10 15 3 | mplelbas | |- ( ( 1r ` S ) e. U <-> ( ( 1r ` S ) e. ( Base ` S ) /\ ( 1r ` S ) finSupp ( 0g ` R ) ) ) |
| 37 | 13 35 36 | sylanbrc | |- ( ph -> ( 1r ` S ) e. U ) |
| 38 | 4 | adantr | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> I e. W ) |
| 39 | 5 | adantr | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> R e. Ring ) |
| 40 | eqid | |- ( oF + " ( ( x supp ( 0g ` R ) ) X. ( y supp ( 0g ` R ) ) ) ) = ( oF + " ( ( x supp ( 0g ` R ) ) X. ( y supp ( 0g ` R ) ) ) ) |
|
| 41 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 42 | simprl | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> x e. U ) |
|
| 43 | simprr | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> y e. U ) |
|
| 44 | 1 2 3 38 39 14 15 40 41 42 43 | mplsubrglem | |- ( ( ph /\ ( x e. U /\ y e. U ) ) -> ( x ( .r ` S ) y ) e. U ) |
| 45 | 44 | ralrimivva | |- ( ph -> A. x e. U A. y e. U ( x ( .r ` S ) y ) e. U ) |
| 46 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 47 | 10 11 46 | issubrg2 | |- ( S e. Ring -> ( U e. ( SubRing ` S ) <-> ( U e. ( SubGrp ` S ) /\ ( 1r ` S ) e. U /\ A. x e. U A. y e. U ( x ( .r ` S ) y ) e. U ) ) ) |
| 48 | 9 47 | syl | |- ( ph -> ( U e. ( SubRing ` S ) <-> ( U e. ( SubGrp ` S ) /\ ( 1r ` S ) e. U /\ A. x e. U A. y e. U ( x ( .r ` S ) y ) e. U ) ) ) |
| 49 | 8 37 45 48 | mpbir3and | |- ( ph -> U e. ( SubRing ` S ) ) |