This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltbval.c | |- C = ( T |
|
| ltbval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| ltbval.i | |- ( ph -> I e. V ) |
||
| ltbval.t | |- ( ph -> T e. W ) |
||
| Assertion | ltbval | |- ( ph -> C = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbval.c | |- C = ( T |
|
| 2 | ltbval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 3 | ltbval.i | |- ( ph -> I e. V ) |
|
| 4 | ltbval.t | |- ( ph -> T e. W ) |
|
| 5 | elex | |- ( T e. W -> T e. _V ) |
|
| 6 | elex | |- ( I e. V -> I e. _V ) |
|
| 7 | simpr | |- ( ( r = T /\ i = I ) -> i = I ) |
|
| 8 | 7 | oveq2d | |- ( ( r = T /\ i = I ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 9 | rabeq | |- ( ( NN0 ^m i ) = ( NN0 ^m I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
|
| 10 | 8 9 | syl | |- ( ( r = T /\ i = I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 11 | 10 2 | eqtr4di | |- ( ( r = T /\ i = I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
| 12 | 11 | sseq2d | |- ( ( r = T /\ i = I ) -> ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } <-> { x , y } C_ D ) ) |
| 13 | simpl | |- ( ( r = T /\ i = I ) -> r = T ) |
|
| 14 | 13 | breqd | |- ( ( r = T /\ i = I ) -> ( z r w <-> z T w ) ) |
| 15 | 14 | imbi1d | |- ( ( r = T /\ i = I ) -> ( ( z r w -> ( x ` w ) = ( y ` w ) ) <-> ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 16 | 7 15 | raleqbidv | |- ( ( r = T /\ i = I ) -> ( A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) <-> A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 17 | 16 | anbi2d | |- ( ( r = T /\ i = I ) -> ( ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) ) |
| 18 | 7 17 | rexeqbidv | |- ( ( r = T /\ i = I ) -> ( E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) ) |
| 19 | 12 18 | anbi12d | |- ( ( r = T /\ i = I ) -> ( ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) <-> ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) ) ) |
| 20 | 19 | opabbidv | |- ( ( r = T /\ i = I ) -> { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
| 21 | df-ltbag | |- |
|
| 22 | vex | |- x e. _V |
|
| 23 | vex | |- y e. _V |
|
| 24 | 22 23 | prss | |- ( ( x e. D /\ y e. D ) <-> { x , y } C_ D ) |
| 25 | 24 | anbi1i | |- ( ( ( x e. D /\ y e. D ) /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) <-> ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) ) |
| 26 | 25 | opabbii | |- { <. x , y >. | ( ( x e. D /\ y e. D ) /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } |
| 27 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 28 | 2 27 | rabex2 | |- D e. _V |
| 29 | 28 28 | xpex | |- ( D X. D ) e. _V |
| 30 | opabssxp | |- { <. x , y >. | ( ( x e. D /\ y e. D ) /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } C_ ( D X. D ) |
|
| 31 | 29 30 | ssexi | |- { <. x , y >. | ( ( x e. D /\ y e. D ) /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } e. _V |
| 32 | 26 31 | eqeltrri | |- { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } e. _V |
| 33 | 20 21 32 | ovmpoa | |- ( ( T e. _V /\ I e. _V ) -> ( T |
| 34 | 5 6 33 | syl2an | |- ( ( T e. W /\ I e. V ) -> ( T |
| 35 | 4 3 34 | syl2anc | |- ( ph -> ( T |
| 36 | 1 35 | eqtrid | |- ( ph -> C = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |