This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of a function is a subset of a finite set, the function is finitely supported. (Contributed by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppssfifsupp | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( F e. Fin /\ ( G supp Z ) C_ F ) ) -> G finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi | |- ( ( F e. Fin /\ ( G supp Z ) C_ F ) -> ( G supp Z ) e. Fin ) |
|
| 2 | 1 | adantl | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( F e. Fin /\ ( G supp Z ) C_ F ) ) -> ( G supp Z ) e. Fin ) |
| 3 | 3ancoma | |- ( ( G e. V /\ Fun G /\ Z e. W ) <-> ( Fun G /\ G e. V /\ Z e. W ) ) |
|
| 4 | 3 | biimpi | |- ( ( G e. V /\ Fun G /\ Z e. W ) -> ( Fun G /\ G e. V /\ Z e. W ) ) |
| 5 | 4 | adantr | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( F e. Fin /\ ( G supp Z ) C_ F ) ) -> ( Fun G /\ G e. V /\ Z e. W ) ) |
| 6 | funisfsupp | |- ( ( Fun G /\ G e. V /\ Z e. W ) -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) |
|
| 7 | 5 6 | syl | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( F e. Fin /\ ( G supp Z ) C_ F ) ) -> ( G finSupp Z <-> ( G supp Z ) e. Fin ) ) |
| 8 | 2 7 | mpbird | |- ( ( ( G e. V /\ Fun G /\ Z e. W ) /\ ( F e. Fin /\ ( G supp Z ) C_ F ) ) -> G finSupp Z ) |