This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| mulgnnsubcl.t | |- .x. = ( .g ` G ) |
||
| mulgnnsubcl.p | |- .+ = ( +g ` G ) |
||
| mulgnnsubcl.g | |- ( ph -> G e. V ) |
||
| mulgnnsubcl.s | |- ( ph -> S C_ B ) |
||
| mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| mulgnn0subcl.z | |- .0. = ( 0g ` G ) |
||
| mulgnn0subcl.c | |- ( ph -> .0. e. S ) |
||
| Assertion | mulgnn0subcl | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | |- B = ( Base ` G ) |
|
| 2 | mulgnnsubcl.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnnsubcl.p | |- .+ = ( +g ` G ) |
|
| 4 | mulgnnsubcl.g | |- ( ph -> G e. V ) |
|
| 5 | mulgnnsubcl.s | |- ( ph -> S C_ B ) |
|
| 6 | mulgnnsubcl.c | |- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 7 | mulgnn0subcl.z | |- .0. = ( 0g ` G ) |
|
| 8 | mulgnn0subcl.c | |- ( ph -> .0. e. S ) |
|
| 9 | 1 2 3 4 5 6 | mulgnnsubcl | |- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) |
| 10 | 9 | 3expa | |- ( ( ( ph /\ N e. NN ) /\ X e. S ) -> ( N .x. X ) e. S ) |
| 11 | 10 | an32s | |- ( ( ( ph /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) e. S ) |
| 12 | 11 | 3adantl2 | |- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) e. S ) |
| 13 | oveq1 | |- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
|
| 14 | 5 | 3ad2ant1 | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> S C_ B ) |
| 15 | simp3 | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> X e. S ) |
|
| 16 | 14 15 | sseldd | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> X e. B ) |
| 17 | 1 7 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = .0. ) |
| 18 | 16 17 | syl | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( 0 .x. X ) = .0. ) |
| 19 | 13 18 | sylan9eqr | |- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) = .0. ) |
| 20 | 8 | 3ad2ant1 | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> .0. e. S ) |
| 21 | 20 | adantr | |- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> .0. e. S ) |
| 22 | 19 21 | eqeltrd | |- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) e. S ) |
| 23 | simp2 | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> N e. NN0 ) |
|
| 24 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 25 | 23 24 | sylib | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N e. NN \/ N = 0 ) ) |
| 26 | 12 22 25 | mpjaodan | |- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) |