This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power series variable function is a function from the index set to elements of the power series structure representing X i for each i . (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf.s | |- S = ( I mPwSer R ) |
|
| mvrf.v | |- V = ( I mVar R ) |
||
| mvrf.b | |- B = ( Base ` S ) |
||
| mvrf.i | |- ( ph -> I e. W ) |
||
| mvrf.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mvrf | |- ( ph -> V : I --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf.s | |- S = ( I mPwSer R ) |
|
| 2 | mvrf.v | |- V = ( I mVar R ) |
|
| 3 | mvrf.b | |- B = ( Base ` S ) |
|
| 4 | mvrf.i | |- ( ph -> I e. W ) |
|
| 5 | mvrf.r | |- ( ph -> R e. Ring ) |
|
| 6 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | 2 6 7 8 4 5 | mvrfval | |- ( ph -> V = ( x e. I |-> ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 10 8 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 12 | 5 11 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 | 10 7 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 14 | 5 13 | syl | |- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 15 | 12 14 | ifcld | |- ( ph -> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( ph /\ x e. I ) /\ f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 17 | 16 | fmpttd | |- ( ( ph /\ x e. I ) -> ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 18 | fvex | |- ( Base ` R ) e. _V |
|
| 19 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 20 | 19 | rabex | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
| 21 | 18 20 | elmap | |- ( ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) <-> ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` R ) ) |
| 22 | 17 21 | sylibr | |- ( ( ph /\ x e. I ) -> ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 23 | 1 10 6 3 4 | psrbas | |- ( ph -> B = ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ x e. I ) -> B = ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 25 | 22 24 | eleqtrrd | |- ( ( ph /\ x e. I ) -> ( f e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. B ) |
| 26 | 9 25 | fmpt3d | |- ( ph -> V : I --> B ) |