This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrcnrg.s | |- S = ( I mPwSer R ) |
|
| psrcnrg.i | |- ( ph -> I e. V ) |
||
| psrcnrg.r | |- ( ph -> R e. CRing ) |
||
| Assertion | psrassa | |- ( ph -> S e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrcnrg.s | |- S = ( I mPwSer R ) |
|
| 2 | psrcnrg.i | |- ( ph -> I e. V ) |
|
| 3 | psrcnrg.r | |- ( ph -> R e. CRing ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
|
| 5 | 1 2 3 | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| 6 | eqidd | |- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
|
| 7 | eqidd | |- ( ph -> ( .s ` S ) = ( .s ` S ) ) |
|
| 8 | eqidd | |- ( ph -> ( .r ` S ) = ( .r ` S ) ) |
|
| 9 | 3 | crngringd | |- ( ph -> R e. Ring ) |
| 10 | 1 2 9 | psrlmod | |- ( ph -> S e. LMod ) |
| 11 | 1 2 9 | psrring | |- ( ph -> S e. Ring ) |
| 12 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> I e. V ) |
| 13 | 9 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) |
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 16 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 17 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
|
| 18 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) |
|
| 19 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. CRing ) |
| 20 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 21 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 22 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` R ) ) |
|
| 23 | 1 12 13 14 15 16 17 18 19 20 21 22 | psrass23 | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) /\ ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) ) |
| 24 | 23 | simpld | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) |
| 25 | 23 | simprd | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) |
| 26 | 4 5 6 7 8 10 11 24 25 | isassad | |- ( ph -> S e. AssAlg ) |