This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod0vs.v | |- V = ( Base ` W ) |
|
| lmod0vs.f | |- F = ( Scalar ` W ) |
||
| lmod0vs.s | |- .x. = ( .s ` W ) |
||
| lmod0vs.o | |- O = ( 0g ` F ) |
||
| lmod0vs.z | |- .0. = ( 0g ` W ) |
||
| Assertion | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0vs.v | |- V = ( Base ` W ) |
|
| 2 | lmod0vs.f | |- F = ( Scalar ` W ) |
|
| 3 | lmod0vs.s | |- .x. = ( .s ` W ) |
|
| 4 | lmod0vs.o | |- O = ( 0g ` F ) |
|
| 5 | lmod0vs.z | |- .0. = ( 0g ` W ) |
|
| 6 | simpl | |- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
|
| 7 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 8 | 7 | adantr | |- ( ( W e. LMod /\ X e. V ) -> F e. Ring ) |
| 9 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 10 | 9 4 | ring0cl | |- ( F e. Ring -> O e. ( Base ` F ) ) |
| 11 | 8 10 | syl | |- ( ( W e. LMod /\ X e. V ) -> O e. ( Base ` F ) ) |
| 12 | simpr | |- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
|
| 13 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 14 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 15 | 1 13 2 3 9 14 | lmodvsdir | |- ( ( W e. LMod /\ ( O e. ( Base ` F ) /\ O e. ( Base ` F ) /\ X e. V ) ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) |
| 16 | 6 11 11 12 15 | syl13anc | |- ( ( W e. LMod /\ X e. V ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) |
| 17 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 18 | 8 17 | syl | |- ( ( W e. LMod /\ X e. V ) -> F e. Grp ) |
| 19 | 9 14 4 | grplid | |- ( ( F e. Grp /\ O e. ( Base ` F ) ) -> ( O ( +g ` F ) O ) = O ) |
| 20 | 18 11 19 | syl2anc | |- ( ( W e. LMod /\ X e. V ) -> ( O ( +g ` F ) O ) = O ) |
| 21 | 20 | oveq1d | |- ( ( W e. LMod /\ X e. V ) -> ( ( O ( +g ` F ) O ) .x. X ) = ( O .x. X ) ) |
| 22 | 16 21 | eqtr3d | |- ( ( W e. LMod /\ X e. V ) -> ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) ) |
| 23 | 1 2 3 9 | lmodvscl | |- ( ( W e. LMod /\ O e. ( Base ` F ) /\ X e. V ) -> ( O .x. X ) e. V ) |
| 24 | 6 11 12 23 | syl3anc | |- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) e. V ) |
| 25 | 1 13 5 | lmod0vid | |- ( ( W e. LMod /\ ( O .x. X ) e. V ) -> ( ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) <-> .0. = ( O .x. X ) ) ) |
| 26 | 24 25 | syldan | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) = ( O .x. X ) <-> .0. = ( O .x. X ) ) ) |
| 27 | 22 26 | mpbid | |- ( ( W e. LMod /\ X e. V ) -> .0. = ( O .x. X ) ) |
| 28 | 27 | eqcomd | |- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) = .0. ) |