This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic span of a subalgebra is itself. ( spanid analog.) (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | |- A = ( AlgSpan ` W ) |
|
| aspval.v | |- V = ( Base ` W ) |
||
| aspval.l | |- L = ( LSubSp ` W ) |
||
| Assertion | aspid | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval.v | |- V = ( Base ` W ) |
|
| 3 | aspval.l | |- L = ( LSubSp ` W ) |
|
| 4 | simp1 | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> W e. AssAlg ) |
|
| 5 | 2 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ V ) |
| 6 | 5 | 3ad2ant2 | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S C_ V ) |
| 7 | 1 2 3 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 8 | 4 6 7 | syl2anc | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } ) |
| 9 | 3simpc | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( S e. ( SubRing ` W ) /\ S e. L ) ) |
|
| 10 | elin | |- ( S e. ( ( SubRing ` W ) i^i L ) <-> ( S e. ( SubRing ` W ) /\ S e. L ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> S e. ( ( SubRing ` W ) i^i L ) ) |
| 12 | intmin | |- ( S e. ( ( SubRing ` W ) i^i L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) |
|
| 13 | 11 12 | syl | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> |^| { t e. ( ( SubRing ` W ) i^i L ) | S C_ t } = S ) |
| 14 | 8 13 | eqtrd | |- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) /\ S e. L ) -> ( A ` S ) = S ) |