This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgsubm.1 | |- M = ( mulGrp ` R ) |
|
| Assertion | subrgsubm | |- ( A e. ( SubRing ` R ) -> A e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgsubm.1 | |- M = ( mulGrp ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 2 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 4 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 5 | 4 | subrg1cl | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
| 6 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 7 | eqid | |- ( R |`s A ) = ( R |`s A ) |
|
| 8 | 7 1 | mgpress | |- ( ( R e. Ring /\ A e. ( SubRing ` R ) ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
| 9 | 6 8 | mpancom | |- ( A e. ( SubRing ` R ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
| 10 | 7 | subrgring | |- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
| 11 | eqid | |- ( mulGrp ` ( R |`s A ) ) = ( mulGrp ` ( R |`s A ) ) |
|
| 12 | 11 | ringmgp | |- ( ( R |`s A ) e. Ring -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
| 13 | 10 12 | syl | |- ( A e. ( SubRing ` R ) -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
| 14 | 9 13 | eqeltrd | |- ( A e. ( SubRing ` R ) -> ( M |`s A ) e. Mnd ) |
| 15 | 1 | ringmgp | |- ( R e. Ring -> M e. Mnd ) |
| 16 | 1 2 | mgpbas | |- ( Base ` R ) = ( Base ` M ) |
| 17 | 1 4 | ringidval | |- ( 1r ` R ) = ( 0g ` M ) |
| 18 | eqid | |- ( M |`s A ) = ( M |`s A ) |
|
| 19 | 16 17 18 | issubm2 | |- ( M e. Mnd -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
| 20 | 6 15 19 | 3syl | |- ( A e. ( SubRing ` R ) -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
| 21 | 3 5 14 20 | mpbir3and | |- ( A e. ( SubRing ` R ) -> A e. ( SubMnd ` M ) ) |