This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvscl.f | |- F = ( Scalar ` W ) |
|
| lssvscl.t | |- .x. = ( .s ` W ) |
||
| lssvscl.b | |- B = ( Base ` F ) |
||
| lssvscl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssvscl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( X .x. Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvscl.f | |- F = ( Scalar ` W ) |
|
| 2 | lssvscl.t | |- .x. = ( .s ` W ) |
|
| 3 | lssvscl.b | |- B = ( Base ` F ) |
|
| 4 | lssvscl.s | |- S = ( LSubSp ` W ) |
|
| 5 | simpll | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> W e. LMod ) |
|
| 6 | simprl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> X e. B ) |
|
| 7 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 8 | 7 4 | lssel | |- ( ( U e. S /\ Y e. U ) -> Y e. ( Base ` W ) ) |
| 9 | 8 | ad2ant2l | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> Y e. ( Base ` W ) ) |
| 10 | 7 1 2 3 | lmodvscl | |- ( ( W e. LMod /\ X e. B /\ Y e. ( Base ` W ) ) -> ( X .x. Y ) e. ( Base ` W ) ) |
| 11 | 5 6 9 10 | syl3anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( X .x. Y ) e. ( Base ` W ) ) |
| 12 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 13 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 14 | 7 12 13 | lmod0vrid | |- ( ( W e. LMod /\ ( X .x. Y ) e. ( Base ` W ) ) -> ( ( X .x. Y ) ( +g ` W ) ( 0g ` W ) ) = ( X .x. Y ) ) |
| 15 | 5 11 14 | syl2anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( ( X .x. Y ) ( +g ` W ) ( 0g ` W ) ) = ( X .x. Y ) ) |
| 16 | simplr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> U e. S ) |
|
| 17 | simprr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> Y e. U ) |
|
| 18 | 13 4 | lss0cl | |- ( ( W e. LMod /\ U e. S ) -> ( 0g ` W ) e. U ) |
| 19 | 18 | adantr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( 0g ` W ) e. U ) |
| 20 | 1 3 12 2 4 | lsscl | |- ( ( U e. S /\ ( X e. B /\ Y e. U /\ ( 0g ` W ) e. U ) ) -> ( ( X .x. Y ) ( +g ` W ) ( 0g ` W ) ) e. U ) |
| 21 | 16 6 17 19 20 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( ( X .x. Y ) ( +g ` W ) ( 0g ` W ) ) e. U ) |
| 22 | 15 21 | eqeltrrd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. B /\ Y e. U ) ) -> ( X .x. Y ) e. U ) |