This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017) Remove disjoint variable condition on A , x and avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrabi | |- ( A e. { x e. V | ph } -> A e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclel | |- ( A e. { x | ( x e. V /\ ph ) } <-> E. y ( y = A /\ y e. { x | ( x e. V /\ ph ) } ) ) |
|
| 2 | df-clab | |- ( y e. { x | ( x e. V /\ ph ) } <-> [ y / x ] ( x e. V /\ ph ) ) |
|
| 3 | simpl | |- ( ( x e. V /\ ph ) -> x e. V ) |
|
| 4 | 3 | sbimi | |- ( [ y / x ] ( x e. V /\ ph ) -> [ y / x ] x e. V ) |
| 5 | clelsb1 | |- ( [ y / x ] x e. V <-> y e. V ) |
|
| 6 | 4 5 | sylib | |- ( [ y / x ] ( x e. V /\ ph ) -> y e. V ) |
| 7 | 2 6 | sylbi | |- ( y e. { x | ( x e. V /\ ph ) } -> y e. V ) |
| 8 | eleq1 | |- ( y = A -> ( y e. V <-> A e. V ) ) |
|
| 9 | 8 | biimpa | |- ( ( y = A /\ y e. V ) -> A e. V ) |
| 10 | 7 9 | sylan2 | |- ( ( y = A /\ y e. { x | ( x e. V /\ ph ) } ) -> A e. V ) |
| 11 | 10 | exlimiv | |- ( E. y ( y = A /\ y e. { x | ( x e. V /\ ph ) } ) -> A e. V ) |
| 12 | 1 11 | sylbi | |- ( A e. { x | ( x e. V /\ ph ) } -> A e. V ) |
| 13 | df-rab | |- { x e. V | ph } = { x | ( x e. V /\ ph ) } |
|
| 14 | 12 13 | eleq2s | |- ( A e. { x e. V | ph } -> A e. V ) |