This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon.s | |- P = ( I mPoly R ) |
|
| mplmon.b | |- B = ( Base ` P ) |
||
| mplmon.z | |- .0. = ( 0g ` R ) |
||
| mplmon.o | |- .1. = ( 1r ` R ) |
||
| mplmon.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplmon.i | |- ( ph -> I e. W ) |
||
| mplmon.r | |- ( ph -> R e. Ring ) |
||
| mplmon.x | |- ( ph -> X e. D ) |
||
| Assertion | mplmon | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon.s | |- P = ( I mPoly R ) |
|
| 2 | mplmon.b | |- B = ( Base ` P ) |
|
| 3 | mplmon.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplmon.o | |- .1. = ( 1r ` R ) |
|
| 5 | mplmon.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 6 | mplmon.i | |- ( ph -> I e. W ) |
|
| 7 | mplmon.r | |- ( ph -> R e. Ring ) |
|
| 8 | mplmon.x | |- ( ph -> X e. D ) |
|
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 9 4 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 11 | 9 3 | ring0cl | |- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 12 | 10 11 | ifcld | |- ( R e. Ring -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
| 13 | 7 12 | syl | |- ( ph -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ y e. D ) -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
| 15 | 14 | fmpttd | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) |
| 16 | fvex | |- ( Base ` R ) e. _V |
|
| 17 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 18 | 5 17 | rabex2 | |- D e. _V |
| 19 | 16 18 | elmap | |- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) <-> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) |
| 20 | 15 19 | sylibr | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) ) |
| 21 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 22 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 23 | 21 9 5 22 6 | psrbas | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m D ) ) |
| 24 | 20 23 | eleqtrrd | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) ) |
| 25 | 18 | mptex | |- ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V |
| 26 | funmpt | |- Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) |
|
| 27 | 3 | fvexi | |- .0. e. _V |
| 28 | 25 26 27 | 3pm3.2i | |- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) |
| 29 | 28 | a1i | |- ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) ) |
| 30 | snfi | |- { X } e. Fin |
|
| 31 | 30 | a1i | |- ( ph -> { X } e. Fin ) |
| 32 | eldifsni | |- ( y e. ( D \ { X } ) -> y =/= X ) |
|
| 33 | 32 | adantl | |- ( ( ph /\ y e. ( D \ { X } ) ) -> y =/= X ) |
| 34 | 33 | neneqd | |- ( ( ph /\ y e. ( D \ { X } ) ) -> -. y = X ) |
| 35 | 34 | iffalsed | |- ( ( ph /\ y e. ( D \ { X } ) ) -> if ( y = X , .1. , .0. ) = .0. ) |
| 36 | 18 | a1i | |- ( ph -> D e. _V ) |
| 37 | 35 36 | suppss2 | |- ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) |
| 38 | suppssfifsupp | |- ( ( ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) /\ ( { X } e. Fin /\ ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) ) -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) |
|
| 39 | 29 31 37 38 | syl12anc | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) |
| 40 | 1 21 22 3 2 | mplelbas | |- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B <-> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) /\ ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) ) |
| 41 | 24 39 40 | sylanbrc | |- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B ) |