This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffnfv | |- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 3 | 2 | ralrimiva | |- ( F : A --> B -> A. x e. A ( F ` x ) e. B ) |
| 4 | 1 3 | jca | |- ( F : A --> B -> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| 5 | simpl | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> F Fn A ) |
|
| 6 | fvelrnb | |- ( F Fn A -> ( y e. ran F <-> E. x e. A ( F ` x ) = y ) ) |
|
| 7 | 6 | biimpd | |- ( F Fn A -> ( y e. ran F -> E. x e. A ( F ` x ) = y ) ) |
| 8 | nfra1 | |- F/ x A. x e. A ( F ` x ) e. B |
|
| 9 | nfv | |- F/ x y e. B |
|
| 10 | rsp | |- ( A. x e. A ( F ` x ) e. B -> ( x e. A -> ( F ` x ) e. B ) ) |
|
| 11 | eleq1 | |- ( ( F ` x ) = y -> ( ( F ` x ) e. B <-> y e. B ) ) |
|
| 12 | 11 | biimpcd | |- ( ( F ` x ) e. B -> ( ( F ` x ) = y -> y e. B ) ) |
| 13 | 10 12 | syl6 | |- ( A. x e. A ( F ` x ) e. B -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) |
| 14 | 8 9 13 | rexlimd | |- ( A. x e. A ( F ` x ) e. B -> ( E. x e. A ( F ` x ) = y -> y e. B ) ) |
| 15 | 7 14 | sylan9 | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> ( y e. ran F -> y e. B ) ) |
| 16 | 15 | ssrdv | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> ran F C_ B ) |
| 17 | df-f | |- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
|
| 18 | 5 16 17 | sylanbrc | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. B ) -> F : A --> B ) |
| 19 | 4 18 | impbii | |- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |