This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprd2d.1 | |- ( ph -> Rel A ) |
|
| dprd2d.2 | |- ( ph -> S : A --> ( SubGrp ` G ) ) |
||
| dprd2d.3 | |- ( ph -> dom A C_ I ) |
||
| dprd2d.4 | |- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
||
| dprd2d.5 | |- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
||
| dprd2d.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | dprd2da | |- ( ph -> G dom DProd S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd2d.1 | |- ( ph -> Rel A ) |
|
| 2 | dprd2d.2 | |- ( ph -> S : A --> ( SubGrp ` G ) ) |
|
| 3 | dprd2d.3 | |- ( ph -> dom A C_ I ) |
|
| 4 | dprd2d.4 | |- ( ( ph /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
|
| 5 | dprd2d.5 | |- ( ph -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
|
| 6 | dprd2d.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 7 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 9 | dprdgrp | |- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> G e. Grp ) |
|
| 10 | 5 9 | syl | |- ( ph -> G e. Grp ) |
| 11 | resiun2 | |- ( A |` U_ i e. I { i } ) = U_ i e. I ( A |` { i } ) |
|
| 12 | iunid | |- U_ i e. I { i } = I |
|
| 13 | 12 | reseq2i | |- ( A |` U_ i e. I { i } ) = ( A |` I ) |
| 14 | 11 13 | eqtr3i | |- U_ i e. I ( A |` { i } ) = ( A |` I ) |
| 15 | relssres | |- ( ( Rel A /\ dom A C_ I ) -> ( A |` I ) = A ) |
|
| 16 | 1 3 15 | syl2anc | |- ( ph -> ( A |` I ) = A ) |
| 17 | 14 16 | eqtrid | |- ( ph -> U_ i e. I ( A |` { i } ) = A ) |
| 18 | ovex | |- ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) e. _V |
|
| 19 | eqid | |- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
|
| 20 | 18 19 | dmmpti | |- dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I |
| 21 | reldmdprd | |- Rel dom DProd |
|
| 22 | 21 | brrelex2i | |- ( G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) -> ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
| 23 | dmexg | |- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
|
| 24 | 5 22 23 | 3syl | |- ( ph -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) e. _V ) |
| 25 | 20 24 | eqeltrrid | |- ( ph -> I e. _V ) |
| 26 | ressn | |- ( A |` { i } ) = ( { i } X. ( A " { i } ) ) |
|
| 27 | vsnex | |- { i } e. _V |
|
| 28 | ovex | |- ( i S j ) e. _V |
|
| 29 | eqid | |- ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { i } ) |-> ( i S j ) ) |
|
| 30 | 28 29 | dmmpti | |- dom ( j e. ( A " { i } ) |-> ( i S j ) ) = ( A " { i } ) |
| 31 | 21 | brrelex2i | |- ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
| 32 | dmexg | |- ( ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
|
| 33 | 4 31 32 | 3syl | |- ( ( ph /\ i e. I ) -> dom ( j e. ( A " { i } ) |-> ( i S j ) ) e. _V ) |
| 34 | 30 33 | eqeltrrid | |- ( ( ph /\ i e. I ) -> ( A " { i } ) e. _V ) |
| 35 | xpexg | |- ( ( { i } e. _V /\ ( A " { i } ) e. _V ) -> ( { i } X. ( A " { i } ) ) e. _V ) |
|
| 36 | 27 34 35 | sylancr | |- ( ( ph /\ i e. I ) -> ( { i } X. ( A " { i } ) ) e. _V ) |
| 37 | 26 36 | eqeltrid | |- ( ( ph /\ i e. I ) -> ( A |` { i } ) e. _V ) |
| 38 | 37 | ralrimiva | |- ( ph -> A. i e. I ( A |` { i } ) e. _V ) |
| 39 | iunexg | |- ( ( I e. _V /\ A. i e. I ( A |` { i } ) e. _V ) -> U_ i e. I ( A |` { i } ) e. _V ) |
|
| 40 | 25 38 39 | syl2anc | |- ( ph -> U_ i e. I ( A |` { i } ) e. _V ) |
| 41 | 17 40 | eqeltrrd | |- ( ph -> A e. _V ) |
| 42 | sneq | |- ( i = ( 1st ` x ) -> { i } = { ( 1st ` x ) } ) |
|
| 43 | 42 | imaeq2d | |- ( i = ( 1st ` x ) -> ( A " { i } ) = ( A " { ( 1st ` x ) } ) ) |
| 44 | oveq1 | |- ( i = ( 1st ` x ) -> ( i S j ) = ( ( 1st ` x ) S j ) ) |
|
| 45 | 43 44 | mpteq12dv | |- ( i = ( 1st ` x ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 46 | 45 | breq2d | |- ( i = ( 1st ` x ) -> ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) <-> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 47 | 4 | ralrimiva | |- ( ph -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ x e. A ) -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
| 49 | 3 | adantr | |- ( ( ph /\ x e. A ) -> dom A C_ I ) |
| 50 | 1stdm | |- ( ( Rel A /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
|
| 51 | 1 50 | sylan | |- ( ( ph /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
| 52 | 49 51 | sseldd | |- ( ( ph /\ x e. A ) -> ( 1st ` x ) e. I ) |
| 53 | 46 48 52 | rspcdva | |- ( ( ph /\ x e. A ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 54 | 53 | 3ad2antr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 55 | 54 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 56 | ovex | |- ( ( 1st ` x ) S j ) e. _V |
|
| 57 | eqid | |- ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
|
| 58 | 56 57 | dmmpti | |- dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) |
| 59 | 58 | a1i | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) ) |
| 60 | 1st2nd | |- ( ( Rel A /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 61 | 1 60 | sylan | |- ( ( ph /\ x e. A ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 62 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 63 | 61 62 | eqeltrrd | |- ( ( ph /\ x e. A ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
| 64 | df-br | |- ( ( 1st ` x ) A ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
|
| 65 | 63 64 | sylibr | |- ( ( ph /\ x e. A ) -> ( 1st ` x ) A ( 2nd ` x ) ) |
| 66 | 1 | adantr | |- ( ( ph /\ x e. A ) -> Rel A ) |
| 67 | elrelimasn | |- ( Rel A -> ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A ( 2nd ` x ) ) ) |
|
| 68 | 66 67 | syl | |- ( ( ph /\ x e. A ) -> ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A ( 2nd ` x ) ) ) |
| 69 | 65 68 | mpbird | |- ( ( ph /\ x e. A ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
| 70 | 69 | 3ad2antr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
| 71 | 70 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) ) |
| 72 | 1 | adantr | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> Rel A ) |
| 73 | simpr2 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> y e. A ) |
|
| 74 | 1st2nd | |- ( ( Rel A /\ y e. A ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 75 | 72 73 74 | syl2anc | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 76 | 75 73 | eqeltrrd | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) |
| 77 | df-br | |- ( ( 1st ` y ) A ( 2nd ` y ) <-> <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) |
|
| 78 | 76 77 | sylibr | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) A ( 2nd ` y ) ) |
| 79 | elrelimasn | |- ( Rel A -> ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) <-> ( 1st ` y ) A ( 2nd ` y ) ) ) |
|
| 80 | 72 79 | syl | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) <-> ( 1st ` y ) A ( 2nd ` y ) ) ) |
| 81 | 78 80 | mpbird | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) ) |
| 82 | 81 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) ) |
| 83 | simpr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 1st ` x ) = ( 1st ` y ) ) |
|
| 84 | 83 | sneqd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> { ( 1st ` x ) } = { ( 1st ` y ) } ) |
| 85 | 84 | imaeq2d | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( A " { ( 1st ` x ) } ) = ( A " { ( 1st ` y ) } ) ) |
| 86 | 82 85 | eleqtrrd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
| 87 | simplr3 | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> x =/= y ) |
|
| 88 | simpr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> x e. A ) |
|
| 89 | 72 88 60 | syl2anc | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 90 | 89 75 | eqeq12d | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( x = y <-> <. ( 1st ` x ) , ( 2nd ` x ) >. = <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 91 | fvex | |- ( 1st ` x ) e. _V |
|
| 92 | fvex | |- ( 2nd ` x ) e. _V |
|
| 93 | 91 92 | opth | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. = <. ( 1st ` y ) , ( 2nd ` y ) >. <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 94 | 90 93 | bitrdi | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( x = y <-> ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 95 | 94 | baibd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( x = y <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 96 | 95 | necon3bid | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( x =/= y <-> ( 2nd ` x ) =/= ( 2nd ` y ) ) ) |
| 97 | 87 96 | mpbid | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( 2nd ` x ) =/= ( 2nd ` y ) ) |
| 98 | 55 59 71 86 97 7 | dprdcntz | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) C_ ( ( Cntz ` G ) ` ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) ) ) |
| 99 | df-ov | |- ( ( 1st ` x ) S ( 2nd ` x ) ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 100 | oveq2 | |- ( j = ( 2nd ` x ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
|
| 101 | 100 57 56 | fvmpt3i | |- ( ( 2nd ` x ) e. ( A " { ( 1st ` x ) } ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
| 102 | 70 101 | syl | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
| 103 | 89 | fveq2d | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 104 | 99 102 103 | 3eqtr4a | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
| 105 | 104 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
| 106 | 83 | oveq1d | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` y ) S j ) ) |
| 107 | 85 106 | mpteq12dv | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
| 108 | 107 | fveq1d | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) = ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) ) |
| 109 | df-ov | |- ( ( 1st ` y ) S ( 2nd ` y ) ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 110 | oveq2 | |- ( j = ( 2nd ` y ) -> ( ( 1st ` y ) S j ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
|
| 111 | eqid | |- ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) |
|
| 112 | ovex | |- ( ( 1st ` y ) S j ) e. _V |
|
| 113 | 110 111 112 | fvmpt3i | |- ( ( 2nd ` y ) e. ( A " { ( 1st ` y ) } ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
| 114 | 81 113 | syl | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
| 115 | 75 | fveq2d | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` y ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 116 | 109 114 115 | 3eqtr4a | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
| 117 | 116 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
| 118 | 108 117 | eqtrd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) = ( S ` y ) ) |
| 119 | 118 | fveq2d | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( ( Cntz ` G ) ` ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` y ) ) ) = ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 120 | 98 105 119 | 3sstr3d | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) = ( 1st ` y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 121 | 1 2 3 4 5 6 | dprd2dlem2 | |- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 122 | 45 | oveq2d | |- ( i = ( 1st ` x ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 123 | 122 19 18 | fvmpt3i | |- ( ( 1st ` x ) e. I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 124 | 52 123 | syl | |- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 125 | 121 124 | sseqtrrd | |- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
| 126 | 125 | 3ad2antr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
| 127 | 126 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( S ` x ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
| 128 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 129 | 20 | a1i | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
| 130 | 52 | 3ad2antr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` x ) e. I ) |
| 131 | 130 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` x ) e. I ) |
| 132 | 3 | adantr | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> dom A C_ I ) |
| 133 | 1stdm | |- ( ( Rel A /\ y e. A ) -> ( 1st ` y ) e. dom A ) |
|
| 134 | 72 73 133 | syl2anc | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) e. dom A ) |
| 135 | 132 134 | sseldd | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( 1st ` y ) e. I ) |
| 136 | 135 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` y ) e. I ) |
| 137 | simpr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( 1st ` x ) =/= ( 1st ` y ) ) |
|
| 138 | 128 129 131 136 137 7 | dprdcntz | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) C_ ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) ) |
| 139 | sneq | |- ( i = ( 1st ` y ) -> { i } = { ( 1st ` y ) } ) |
|
| 140 | 139 | imaeq2d | |- ( i = ( 1st ` y ) -> ( A " { i } ) = ( A " { ( 1st ` y ) } ) ) |
| 141 | oveq1 | |- ( i = ( 1st ` y ) -> ( i S j ) = ( ( 1st ` y ) S j ) ) |
|
| 142 | 140 141 | mpteq12dv | |- ( i = ( 1st ` y ) -> ( j e. ( A " { i } ) |-> ( i S j ) ) = ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
| 143 | 142 | oveq2d | |- ( i = ( 1st ` y ) -> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 144 | 143 19 18 | fvmpt3i | |- ( ( 1st ` y ) e. I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 145 | 135 144 | syl | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) = ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 146 | 145 | fveq2d | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) = ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) ) |
| 147 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 148 | 147 | dprdssv | |- ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) C_ ( Base ` G ) |
| 149 | 142 | breq2d | |- ( i = ( 1st ` y ) -> ( G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) <-> G dom DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 150 | 47 | adantr | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> A. i e. I G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
| 151 | 149 150 135 | rspcdva | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> G dom DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) |
| 152 | 112 111 | dmmpti | |- dom ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( A " { ( 1st ` y ) } ) |
| 153 | 152 | a1i | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> dom ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) = ( A " { ( 1st ` y ) } ) ) |
| 154 | 151 153 81 | dprdub | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ` ( 2nd ` y ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 155 | 116 154 | eqsstrrd | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` y ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) |
| 156 | 147 7 | cntz2ss | |- ( ( ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) C_ ( Base ` G ) /\ ( S ` y ) C_ ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) -> ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 157 | 148 155 156 | sylancr | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( G DProd ( j e. ( A " { ( 1st ` y ) } ) |-> ( ( 1st ` y ) S j ) ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 158 | 146 157 | eqsstrd | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 159 | 158 | adantr | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( Cntz ` G ) ` ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` y ) ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 160 | 138 159 | sstrd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 161 | 127 160 | sstrd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) /\ ( 1st ` x ) =/= ( 1st ` y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 162 | 120 161 | pm2.61dane | |- ( ( ph /\ ( x e. A /\ y e. A /\ x =/= y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 163 | 10 | adantr | |- ( ( ph /\ x e. A ) -> G e. Grp ) |
| 164 | 147 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 165 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 166 | 163 164 165 | 3syl | |- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 167 | 16 | adantr | |- ( ( ph /\ x e. A ) -> ( A |` I ) = A ) |
| 168 | undif2 | |- ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) = ( { ( 1st ` x ) } u. I ) |
|
| 169 | 52 | snssd | |- ( ( ph /\ x e. A ) -> { ( 1st ` x ) } C_ I ) |
| 170 | ssequn1 | |- ( { ( 1st ` x ) } C_ I <-> ( { ( 1st ` x ) } u. I ) = I ) |
|
| 171 | 169 170 | sylib | |- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } u. I ) = I ) |
| 172 | 168 171 | eqtr2id | |- ( ( ph /\ x e. A ) -> I = ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) |
| 173 | 172 | reseq2d | |- ( ( ph /\ x e. A ) -> ( A |` I ) = ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) ) |
| 174 | 167 173 | eqtr3d | |- ( ( ph /\ x e. A ) -> A = ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) ) |
| 175 | resundi | |- ( A |` ( { ( 1st ` x ) } u. ( I \ { ( 1st ` x ) } ) ) ) = ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
|
| 176 | 174 175 | eqtrdi | |- ( ( ph /\ x e. A ) -> A = ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 177 | 176 | difeq1d | |- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) \ { x } ) ) |
| 178 | difundir | |- ( ( ( A |` { ( 1st ` x ) } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
|
| 179 | 177 178 | eqtrdi | |- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) ) |
| 180 | neirr | |- -. ( 1st ` x ) =/= ( 1st ` x ) |
|
| 181 | 61 | eleq1d | |- ( ( ph /\ x e. A ) -> ( x e. ( A |` ( I \ { ( 1st ` x ) } ) ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 182 | df-br | |- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
|
| 183 | 92 | brresi | |- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) <-> ( ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) /\ ( 1st ` x ) A ( 2nd ` x ) ) ) |
| 184 | 183 | simplbi | |- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) -> ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) ) |
| 185 | eldifsni | |- ( ( 1st ` x ) e. ( I \ { ( 1st ` x ) } ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
|
| 186 | 184 185 | syl | |- ( ( 1st ` x ) ( A |` ( I \ { ( 1st ` x ) } ) ) ( 2nd ` x ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
| 187 | 182 186 | sylbir | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. ( A |` ( I \ { ( 1st ` x ) } ) ) -> ( 1st ` x ) =/= ( 1st ` x ) ) |
| 188 | 181 187 | biimtrdi | |- ( ( ph /\ x e. A ) -> ( x e. ( A |` ( I \ { ( 1st ` x ) } ) ) -> ( 1st ` x ) =/= ( 1st ` x ) ) ) |
| 189 | 180 188 | mtoi | |- ( ( ph /\ x e. A ) -> -. x e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
| 190 | disjsn | |- ( ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) <-> -. x e. ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
|
| 191 | 189 190 | sylibr | |- ( ( ph /\ x e. A ) -> ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) ) |
| 192 | disj3 | |- ( ( ( A |` ( I \ { ( 1st ` x ) } ) ) i^i { x } ) = (/) <-> ( A |` ( I \ { ( 1st ` x ) } ) ) = ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
|
| 193 | 191 192 | sylib | |- ( ( ph /\ x e. A ) -> ( A |` ( I \ { ( 1st ` x ) } ) ) = ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) |
| 194 | 193 | eqcomd | |- ( ( ph /\ x e. A ) -> ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) = ( A |` ( I \ { ( 1st ` x ) } ) ) ) |
| 195 | 194 | uneq2d | |- ( ( ph /\ x e. A ) -> ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( ( A |` ( I \ { ( 1st ` x ) } ) ) \ { x } ) ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 196 | 179 195 | eqtrd | |- ( ( ph /\ x e. A ) -> ( A \ { x } ) = ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 197 | 196 | imaeq2d | |- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) = ( S " ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 198 | imaundi | |- ( S " ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) u. ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
|
| 199 | 197 198 | eqtrdi | |- ( ( ph /\ x e. A ) -> ( S " ( A \ { x } ) ) = ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 200 | 199 | unieqd | |- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) = U. ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 201 | uniun | |- U. ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) |
|
| 202 | 200 201 | eqtrdi | |- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) = ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 203 | imassrn | |- ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ran S |
|
| 204 | 2 | frnd | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 205 | 204 | adantr | |- ( ( ph /\ x e. A ) -> ran S C_ ( SubGrp ` G ) ) |
| 206 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 207 | 166 206 | syl | |- ( ( ph /\ x e. A ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 208 | 205 207 | sstrd | |- ( ( ph /\ x e. A ) -> ran S C_ ~P ( Base ` G ) ) |
| 209 | 203 208 | sstrid | |- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 210 | sspwuni | |- ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) |
|
| 211 | 209 210 | sylib | |- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) |
| 212 | 166 6 211 | mrcssidd | |- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
| 213 | imassrn | |- ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ran S |
|
| 214 | 213 208 | sstrid | |- ( ( ph /\ x e. A ) -> ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ~P ( Base ` G ) ) |
| 215 | sspwuni | |- ( ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) |
|
| 216 | 214 215 | sylib | |- ( ( ph /\ x e. A ) -> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) |
| 217 | 166 6 216 | mrcssidd | |- ( ( ph /\ x e. A ) -> U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 218 | unss12 | |- ( ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) /\ U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) -> ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
|
| 219 | 212 217 218 | syl2anc | |- ( ( ph /\ x e. A ) -> ( U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) u. U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 220 | 202 219 | eqsstrd | |- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 221 | 6 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 222 | 166 211 221 | syl2anc | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 223 | 6 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) |
| 224 | 166 216 223 | syl2anc | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) |
| 225 | eqid | |- ( LSSum ` G ) = ( LSSum ` G ) |
|
| 226 | 225 | lsmunss | |- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 227 | 222 224 226 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) u. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 228 | 220 227 | sstrd | |- ( ( ph /\ x e. A ) -> U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 229 | difss | |- ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( A |` { ( 1st ` x ) } ) |
|
| 230 | ressn | |- ( A |` { ( 1st ` x ) } ) = ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) |
|
| 231 | 229 230 | sseqtri | |- ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) |
| 232 | imass2 | |- ( ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) ) |
|
| 233 | 231 232 | ax-mp | |- ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) |
| 234 | ovex | |- ( ( 1st ` x ) S i ) e. _V |
|
| 235 | oveq2 | |- ( j = i -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S i ) ) |
|
| 236 | 57 235 | elrnmpt1s | |- ( ( i e. ( A " { ( 1st ` x ) } ) /\ ( ( 1st ` x ) S i ) e. _V ) -> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 237 | 234 236 | mpan2 | |- ( i e. ( A " { ( 1st ` x ) } ) -> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 238 | 237 | rgen | |- A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
| 239 | 238 | a1i | |- ( ( ph /\ x e. A ) -> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 240 | oveq1 | |- ( y = ( 1st ` x ) -> ( y S i ) = ( ( 1st ` x ) S i ) ) |
|
| 241 | 240 | eleq1d | |- ( y = ( 1st ` x ) -> ( ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 242 | 241 | ralbidv | |- ( y = ( 1st ` x ) -> ( A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 243 | 91 242 | ralsn | |- ( A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. i e. ( A " { ( 1st ` x ) } ) ( ( 1st ` x ) S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 244 | 239 243 | sylibr | |- ( ( ph /\ x e. A ) -> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 245 | 2 | adantr | |- ( ( ph /\ x e. A ) -> S : A --> ( SubGrp ` G ) ) |
| 246 | 245 | ffund | |- ( ( ph /\ x e. A ) -> Fun S ) |
| 247 | resss | |- ( A |` { ( 1st ` x ) } ) C_ A |
|
| 248 | 230 247 | eqsstrri | |- ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ A |
| 249 | 245 | fdmd | |- ( ( ph /\ x e. A ) -> dom S = A ) |
| 250 | 248 249 | sseqtrrid | |- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ dom S ) |
| 251 | funimassov | |- ( ( Fun S /\ ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) C_ dom S ) -> ( ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
|
| 252 | 246 250 251 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) <-> A. y e. { ( 1st ` x ) } A. i e. ( A " { ( 1st ` x ) } ) ( y S i ) e. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 253 | 244 252 | mpbird | |- ( ( ph /\ x e. A ) -> ( S " ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 254 | 233 253 | sstrid | |- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 255 | 254 | unissd | |- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
| 256 | df-ov | |- ( ( 1st ` x ) S j ) = ( S ` <. ( 1st ` x ) , j >. ) |
|
| 257 | 2 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> S : A --> ( SubGrp ` G ) ) |
| 258 | elrelimasn | |- ( Rel A -> ( j e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A j ) ) |
|
| 259 | 66 258 | syl | |- ( ( ph /\ x e. A ) -> ( j e. ( A " { ( 1st ` x ) } ) <-> ( 1st ` x ) A j ) ) |
| 260 | 259 | biimpa | |- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( 1st ` x ) A j ) |
| 261 | df-br | |- ( ( 1st ` x ) A j <-> <. ( 1st ` x ) , j >. e. A ) |
|
| 262 | 260 261 | sylib | |- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> <. ( 1st ` x ) , j >. e. A ) |
| 263 | 257 262 | ffvelcdmd | |- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( S ` <. ( 1st ` x ) , j >. ) e. ( SubGrp ` G ) ) |
| 264 | 256 263 | eqeltrid | |- ( ( ( ph /\ x e. A ) /\ j e. ( A " { ( 1st ` x ) } ) ) -> ( ( 1st ` x ) S j ) e. ( SubGrp ` G ) ) |
| 265 | 264 | fmpttd | |- ( ( ph /\ x e. A ) -> ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) : ( A " { ( 1st ` x ) } ) --> ( SubGrp ` G ) ) |
| 266 | 265 | frnd | |- ( ( ph /\ x e. A ) -> ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( SubGrp ` G ) ) |
| 267 | 266 207 | sstrd | |- ( ( ph /\ x e. A ) -> ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ~P ( Base ` G ) ) |
| 268 | sspwuni | |- ( ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ~P ( Base ` G ) <-> U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( Base ` G ) ) |
|
| 269 | 267 268 | sylib | |- ( ( ph /\ x e. A ) -> U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) C_ ( Base ` G ) ) |
| 270 | 166 6 255 269 | mrcssd | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 271 | 6 | dprdspan | |- ( G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) = ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 272 | 53 271 | syl | |- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) = ( K ` U. ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 273 | 270 272 | sseqtrrd | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 274 | 18 19 | fnmpti | |- ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) Fn I |
| 275 | fnressn | |- ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) Fn I /\ ( 1st ` x ) e. I ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } ) |
|
| 276 | 274 52 275 | sylancr | |- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } ) |
| 277 | 124 | opeq2d | |- ( ( ph /\ x e. A ) -> <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. = <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. ) |
| 278 | 277 | sneqd | |- ( ( ph /\ x e. A ) -> { <. ( 1st ` x ) , ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) >. } = { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) |
| 279 | 276 278 | eqtrd | |- ( ( ph /\ x e. A ) -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) = { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) |
| 280 | 279 | oveq2d | |- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) = ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) ) |
| 281 | dprdsubg | |- ( G dom DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) |
|
| 282 | 53 281 | syl | |- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) |
| 283 | dprdsn | |- ( ( ( 1st ` x ) e. I /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } /\ ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
|
| 284 | 52 282 283 | syl2anc | |- ( ( ph /\ x e. A ) -> ( G dom DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } /\ ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
| 285 | 284 | simprd | |- ( ( ph /\ x e. A ) -> ( G DProd { <. ( 1st ` x ) , ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) >. } ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 286 | 280 285 | eqtrd | |- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) = ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 287 | 5 | adantr | |- ( ( ph /\ x e. A ) -> G dom DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 288 | 20 | a1i | |- ( ( ph /\ x e. A ) -> dom ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) = I ) |
| 289 | difss | |- ( I \ { ( 1st ` x ) } ) C_ I |
|
| 290 | 289 | a1i | |- ( ( ph /\ x e. A ) -> ( I \ { ( 1st ` x ) } ) C_ I ) |
| 291 | disjdif | |- ( { ( 1st ` x ) } i^i ( I \ { ( 1st ` x ) } ) ) = (/) |
|
| 292 | 291 | a1i | |- ( ( ph /\ x e. A ) -> ( { ( 1st ` x ) } i^i ( I \ { ( 1st ` x ) } ) ) = (/) ) |
| 293 | 287 288 169 290 292 7 | dprdcntz2 | |- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` { ( 1st ` x ) } ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 294 | 286 293 | eqsstrrd | |- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 295 | 4 | adantlr | |- ( ( ( ph /\ x e. A ) /\ i e. I ) -> G dom DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) |
| 296 | 66 245 49 295 287 6 290 | dprd2dlem1 | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( G DProd ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) |
| 297 | resmpt | |- ( ( I \ { ( 1st ` x ) } ) C_ I -> ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) = ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
|
| 298 | 289 297 | ax-mp | |- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) = ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |
| 299 | 298 | oveq2i | |- ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( G DProd ( i e. ( I \ { ( 1st ` x ) } ) |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) |
| 300 | 296 299 | eqtr4di | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 301 | 300 | fveq2d | |- ( ( ph /\ x e. A ) -> ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) = ( ( Cntz ` G ) ` ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 302 | 294 301 | sseqtrrd | |- ( ( ph /\ x e. A ) -> ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 303 | 273 302 | sstrd | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 304 | 225 7 | lsmsubg | |- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) /\ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( ( Cntz ` G ) ` ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) |
| 305 | 222 224 303 304 | syl3anc | |- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) |
| 306 | 6 | mrcsscl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( A \ { x } ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) /\ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) e. ( SubGrp ` G ) ) -> ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 307 | 166 228 305 306 | syl3anc | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 308 | sslin | |- ( ( K ` U. ( S " ( A \ { x } ) ) ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) ) |
|
| 309 | 307 308 | syl | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) ) |
| 310 | 2 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 311 | 225 | lsmlub | |- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( S ` x ) e. ( SubGrp ` G ) /\ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) e. ( SubGrp ` G ) ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) /\ ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) <-> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
| 312 | 222 310 282 311 | syl3anc | |- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) /\ ( S ` x ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) <-> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) ) |
| 313 | 273 121 312 | mpbi2and | |- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( G DProd ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) ) |
| 314 | 313 124 | sseqtrrd | |- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) ) |
| 315 | 287 288 290 | dprdres | |- ( ( ph /\ x e. A ) -> ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) /\ ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) C_ ( G DProd ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ) ) ) |
| 316 | 315 | simpld | |- ( ( ph /\ x e. A ) -> G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) |
| 317 | 6 | dprdspan | |- ( G dom DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 318 | 316 317 | syl | |- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) ) |
| 319 | df-ima | |- ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) = ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) |
|
| 320 | 319 | unieqi | |- U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) = U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) |
| 321 | 320 | fveq2i | |- ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ran ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) |
| 322 | 318 321 | eqtr4di | |- ( ( ph /\ x e. A ) -> ( G DProd ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) |` ( I \ { ( 1st ` x ) } ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
| 323 | 300 322 | eqtrd | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
| 324 | eqimss | |- ( ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) = ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
|
| 325 | 323 324 | syl | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) |
| 326 | ss2in | |- ( ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) C_ ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) /\ ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) C_ ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) ) |
|
| 327 | 314 325 326 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 328 | 287 288 52 8 6 | dprddisj | |- ( ( ph /\ x e. A ) -> ( ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) ` ( 1st ` x ) ) i^i ( K ` U. ( ( i e. I |-> ( G DProd ( j e. ( A " { i } ) |-> ( i S j ) ) ) ) " ( I \ { ( 1st ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
| 329 | 327 328 | sseqtrd | |- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) C_ { ( 0g ` G ) } ) |
| 330 | 225 | lsmub2 | |- ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( S ` x ) e. ( SubGrp ` G ) ) -> ( S ` x ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
| 331 | 222 310 330 | syl2anc | |- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
| 332 | 8 | subg0cl | |- ( ( S ` x ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 333 | 310 332 | syl | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( S ` x ) ) |
| 334 | 331 333 | sseldd | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) ) |
| 335 | 8 | subg0cl | |- ( ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 336 | 224 335 | syl | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) |
| 337 | 334 336 | elind | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 338 | 337 | snssd | |- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) |
| 339 | 329 338 | eqssd | |- ( ( ph /\ x e. A ) -> ( ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( S ` x ) ) i^i ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) = { ( 0g ` G ) } ) |
| 340 | incom | |- ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) i^i ( S ` x ) ) = ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
|
| 341 | 69 101 | syl | |- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( ( 1st ` x ) S ( 2nd ` x ) ) ) |
| 342 | 61 | fveq2d | |- ( ( ph /\ x e. A ) -> ( S ` x ) = ( S ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 343 | 99 341 342 | 3eqtr4a | |- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) ) |
| 344 | eqimss2 | |- ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) = ( S ` x ) -> ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) ) |
|
| 345 | 343 344 | syl | |- ( ( ph /\ x e. A ) -> ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) ) |
| 346 | eldifsn | |- ( y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) <-> ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) |
|
| 347 | 1 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> Rel A ) |
| 348 | simprl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. ( A |` { ( 1st ` x ) } ) ) |
|
| 349 | 247 348 | sselid | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. A ) |
| 350 | 347 349 74 | syl2anc | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 351 | 350 | fveq2d | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( S ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 352 | 351 109 | eqtr4di | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( ( 1st ` y ) S ( 2nd ` y ) ) ) |
| 353 | 350 348 | eqeltrrd | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) ) |
| 354 | fvex | |- ( 2nd ` y ) e. _V |
|
| 355 | 354 | opelresi | |- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) <-> ( ( 1st ` y ) e. { ( 1st ` x ) } /\ <. ( 1st ` y ) , ( 2nd ` y ) >. e. A ) ) |
| 356 | 355 | simplbi | |- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. ( A |` { ( 1st ` x ) } ) -> ( 1st ` y ) e. { ( 1st ` x ) } ) |
| 357 | 353 356 | syl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 1st ` y ) e. { ( 1st ` x ) } ) |
| 358 | elsni | |- ( ( 1st ` y ) e. { ( 1st ` x ) } -> ( 1st ` y ) = ( 1st ` x ) ) |
|
| 359 | 357 358 | syl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 1st ` y ) = ( 1st ` x ) ) |
| 360 | 359 | oveq1d | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( ( 1st ` y ) S ( 2nd ` y ) ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
| 361 | 352 360 | eqtrd | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
| 362 | 348 230 | eleqtrdi | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y e. ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) ) |
| 363 | xp2nd | |- ( y e. ( { ( 1st ` x ) } X. ( A " { ( 1st ` x ) } ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
|
| 364 | 362 363 | syl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) ) |
| 365 | simprr | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> y =/= x ) |
|
| 366 | 61 | adantr | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 367 | 350 366 | eqeq12d | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y = x <-> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 368 | fvex | |- ( 1st ` y ) e. _V |
|
| 369 | 368 354 | opth | |- ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( ( 1st ` y ) = ( 1st ` x ) /\ ( 2nd ` y ) = ( 2nd ` x ) ) ) |
| 370 | 369 | baib | |- ( ( 1st ` y ) = ( 1st ` x ) -> ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
| 371 | 359 370 | syl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( <. ( 1st ` y ) , ( 2nd ` y ) >. = <. ( 1st ` x ) , ( 2nd ` x ) >. <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
| 372 | 367 371 | bitrd | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y = x <-> ( 2nd ` y ) = ( 2nd ` x ) ) ) |
| 373 | 372 | necon3bid | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( y =/= x <-> ( 2nd ` y ) =/= ( 2nd ` x ) ) ) |
| 374 | 365 373 | mpbid | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) =/= ( 2nd ` x ) ) |
| 375 | eldifsn | |- ( ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) <-> ( ( 2nd ` y ) e. ( A " { ( 1st ` x ) } ) /\ ( 2nd ` y ) =/= ( 2nd ` x ) ) ) |
|
| 376 | 364 374 375 | sylanbrc | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) |
| 377 | ovex | |- ( ( 1st ` x ) S ( 2nd ` y ) ) e. _V |
|
| 378 | difss | |- ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) C_ ( A " { ( 1st ` x ) } ) |
|
| 379 | resmpt | |- ( ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) C_ ( A " { ( 1st ` x ) } ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ( j e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ) |
|
| 380 | 378 379 | ax-mp | |- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ( j e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
| 381 | oveq2 | |- ( j = ( 2nd ` y ) -> ( ( 1st ` x ) S j ) = ( ( 1st ` x ) S ( 2nd ` y ) ) ) |
|
| 382 | 380 381 | elrnmpt1s | |- ( ( ( 2nd ` y ) e. ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) /\ ( ( 1st ` x ) S ( 2nd ` y ) ) e. _V ) -> ( ( 1st ` x ) S ( 2nd ` y ) ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 383 | 376 377 382 | sylancl | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( ( 1st ` x ) S ( 2nd ` y ) ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 384 | 361 383 | eqeltrd | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) e. ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 385 | df-ima | |- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) = ran ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |` ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) |
|
| 386 | 384 385 | eleqtrrdi | |- ( ( ( ph /\ x e. A ) /\ ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 387 | 386 | ex | |- ( ( ph /\ x e. A ) -> ( ( y e. ( A |` { ( 1st ` x ) } ) /\ y =/= x ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
| 388 | 346 387 | biimtrid | |- ( ( ph /\ x e. A ) -> ( y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) -> ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
| 389 | 388 | ralrimiv | |- ( ( ph /\ x e. A ) -> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 390 | 231 250 | sstrid | |- ( ( ph /\ x e. A ) -> ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ dom S ) |
| 391 | funimass4 | |- ( ( Fun S /\ ( ( A |` { ( 1st ` x ) } ) \ { x } ) C_ dom S ) -> ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) <-> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
|
| 392 | 246 390 391 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) <-> A. y e. ( ( A |` { ( 1st ` x ) } ) \ { x } ) ( S ` y ) e. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
| 393 | 389 392 | mpbird | |- ( ( ph /\ x e. A ) -> ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 394 | 393 | unissd | |- ( ( ph /\ x e. A ) -> U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) C_ U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) |
| 395 | imassrn | |- ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ran ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) |
|
| 396 | 395 267 | sstrid | |- ( ( ph /\ x e. A ) -> ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ~P ( Base ` G ) ) |
| 397 | sspwuni | |- ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ~P ( Base ` G ) <-> U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ( Base ` G ) ) |
|
| 398 | 396 397 | sylib | |- ( ( ph /\ x e. A ) -> U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) C_ ( Base ` G ) ) |
| 399 | 166 6 394 398 | mrcssd | |- ( ( ph /\ x e. A ) -> ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) |
| 400 | ss2in | |- ( ( ( S ` x ) C_ ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) /\ ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) C_ ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) ) |
|
| 401 | 345 399 400 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) ) |
| 402 | 58 | a1i | |- ( ( ph /\ x e. A ) -> dom ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) = ( A " { ( 1st ` x ) } ) ) |
| 403 | 53 402 69 8 6 | dprddisj | |- ( ( ph /\ x e. A ) -> ( ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) ` ( 2nd ` x ) ) i^i ( K ` U. ( ( j e. ( A " { ( 1st ` x ) } ) |-> ( ( 1st ` x ) S j ) ) " ( ( A " { ( 1st ` x ) } ) \ { ( 2nd ` x ) } ) ) ) ) = { ( 0g ` G ) } ) |
| 404 | 401 403 | sseqtrd | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 405 | 8 | subg0cl | |- ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
| 406 | 222 405 | syl | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) |
| 407 | 333 406 | elind | |- ( ( ph /\ x e. A ) -> ( 0g ` G ) e. ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) ) |
| 408 | 407 | snssd | |- ( ( ph /\ x e. A ) -> { ( 0g ` G ) } C_ ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) ) |
| 409 | 404 408 | eqssd | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 410 | 340 409 | eqtrid | |- ( ( ph /\ x e. A ) -> ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) i^i ( S ` x ) ) = { ( 0g ` G ) } ) |
| 411 | 225 222 310 224 8 339 410 | lsmdisj2 | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( ( K ` U. ( S " ( ( A |` { ( 1st ` x ) } ) \ { x } ) ) ) ( LSSum ` G ) ( K ` U. ( S " ( A |` ( I \ { ( 1st ` x ) } ) ) ) ) ) ) = { ( 0g ` G ) } ) |
| 412 | 309 411 | sseqtrd | |- ( ( ph /\ x e. A ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( A \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 413 | 7 8 6 10 41 2 162 412 | dmdprdd | |- ( ph -> G dom DProd S ) |