This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressn | |- ( A |` { B } ) = ( { B } X. ( A " { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( A |` { B } ) |
|
| 2 | relxp | |- Rel ( { B } X. ( A " { B } ) ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | elimasn | |- ( y e. ( A " { x } ) <-> <. x , y >. e. A ) |
| 6 | elsni | |- ( x e. { B } -> x = B ) |
|
| 7 | 6 | sneqd | |- ( x e. { B } -> { x } = { B } ) |
| 8 | 7 | imaeq2d | |- ( x e. { B } -> ( A " { x } ) = ( A " { B } ) ) |
| 9 | 8 | eleq2d | |- ( x e. { B } -> ( y e. ( A " { x } ) <-> y e. ( A " { B } ) ) ) |
| 10 | 5 9 | bitr3id | |- ( x e. { B } -> ( <. x , y >. e. A <-> y e. ( A " { B } ) ) ) |
| 11 | 10 | pm5.32i | |- ( ( x e. { B } /\ <. x , y >. e. A ) <-> ( x e. { B } /\ y e. ( A " { B } ) ) ) |
| 12 | 4 | opelresi | |- ( <. x , y >. e. ( A |` { B } ) <-> ( x e. { B } /\ <. x , y >. e. A ) ) |
| 13 | opelxp | |- ( <. x , y >. e. ( { B } X. ( A " { B } ) ) <-> ( x e. { B } /\ y e. ( A " { B } ) ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( <. x , y >. e. ( A |` { B } ) <-> <. x , y >. e. ( { B } X. ( A " { B } ) ) ) |
| 15 | 1 2 14 | eqrelriiv | |- ( A |` { B } ) = ( { B } X. ( A " { B } ) ) |