This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz.1 | |- ( ph -> G dom DProd S ) |
|
| dprdcntz.2 | |- ( ph -> dom S = I ) |
||
| dprdcntz.3 | |- ( ph -> X e. I ) |
||
| dprdcntz.4 | |- ( ph -> Y e. I ) |
||
| dprdcntz.5 | |- ( ph -> X =/= Y ) |
||
| dprdcntz.z | |- Z = ( Cntz ` G ) |
||
| Assertion | dprdcntz | |- ( ph -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdcntz.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdcntz.3 | |- ( ph -> X e. I ) |
|
| 4 | dprdcntz.4 | |- ( ph -> Y e. I ) |
|
| 5 | dprdcntz.5 | |- ( ph -> X =/= Y ) |
|
| 6 | dprdcntz.z | |- Z = ( Cntz ` G ) |
|
| 7 | 2fveq3 | |- ( y = Y -> ( Z ` ( S ` y ) ) = ( Z ` ( S ` Y ) ) ) |
|
| 8 | 7 | sseq2d | |- ( y = Y -> ( ( S ` X ) C_ ( Z ` ( S ` y ) ) <-> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) ) |
| 9 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 10 | 9 | difeq2d | |- ( x = X -> ( I \ { x } ) = ( I \ { X } ) ) |
| 11 | fveq2 | |- ( x = X -> ( S ` x ) = ( S ` X ) ) |
|
| 12 | 11 | sseq1d | |- ( x = X -> ( ( S ` x ) C_ ( Z ` ( S ` y ) ) <-> ( S ` X ) C_ ( Z ` ( S ` y ) ) ) ) |
| 13 | 10 12 | raleqbidv | |- ( x = X -> ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) <-> A. y e. ( I \ { X } ) ( S ` X ) C_ ( Z ` ( S ` y ) ) ) ) |
| 14 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 15 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 16 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 17 | 6 15 16 | dmdprd | |- ( ( I e. _V /\ dom S = I ) -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 18 | 14 2 17 | syl2anc | |- ( ph -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
| 19 | 1 18 | mpbid | |- ( ph -> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) |
| 20 | 19 | simp3d | |- ( ph -> A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) |
| 21 | simpl | |- ( ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) -> A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
|
| 22 | 21 | ralimi | |- ( A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) -> A. x e. I A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 23 | 20 22 | syl | |- ( ph -> A. x e. I A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 24 | 13 23 3 | rspcdva | |- ( ph -> A. y e. ( I \ { X } ) ( S ` X ) C_ ( Z ` ( S ` y ) ) ) |
| 25 | 5 | necomd | |- ( ph -> Y =/= X ) |
| 26 | eldifsn | |- ( Y e. ( I \ { X } ) <-> ( Y e. I /\ Y =/= X ) ) |
|
| 27 | 4 25 26 | sylanbrc | |- ( ph -> Y e. ( I \ { X } ) ) |
| 28 | 8 24 27 | rspcdva | |- ( ph -> ( S ` X ) C_ ( Z ` ( S ` Y ) ) ) |