This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdub.1 | |- ( ph -> G dom DProd S ) |
|
| dprdub.2 | |- ( ph -> dom S = I ) |
||
| dprdub.3 | |- ( ph -> X e. I ) |
||
| Assertion | dprdub | |- ( ph -> ( S ` X ) C_ ( G DProd S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdub.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdub.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdub.3 | |- ( ph -> X e. I ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | eqid | |- { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |
|
| 6 | 1 | adantr | |- ( ( ph /\ x e. ( S ` X ) ) -> G dom DProd S ) |
| 7 | 2 | adantr | |- ( ( ph /\ x e. ( S ` X ) ) -> dom S = I ) |
| 8 | 3 | adantr | |- ( ( ph /\ x e. ( S ` X ) ) -> X e. I ) |
| 9 | simpr | |- ( ( ph /\ x e. ( S ` X ) ) -> x e. ( S ` X ) ) |
|
| 10 | eqid | |- ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) = ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) |
|
| 11 | 4 5 6 7 8 9 10 | dprdfid | |- ( ( ph /\ x e. ( S ` X ) ) -> ( ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } /\ ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) = x ) ) |
| 12 | 11 | simprd | |- ( ( ph /\ x e. ( S ` X ) ) -> ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) = x ) |
| 13 | 11 | simpld | |- ( ( ph /\ x e. ( S ` X ) ) -> ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) |
| 14 | 4 5 6 7 13 | eldprdi | |- ( ( ph /\ x e. ( S ` X ) ) -> ( G gsum ( n e. I |-> if ( n = X , x , ( 0g ` G ) ) ) ) e. ( G DProd S ) ) |
| 15 | 12 14 | eqeltrrd | |- ( ( ph /\ x e. ( S ` X ) ) -> x e. ( G DProd S ) ) |
| 16 | 15 | ex | |- ( ph -> ( x e. ( S ` X ) -> x e. ( G DProd S ) ) ) |
| 17 | 16 | ssrdv | |- ( ph -> ( S ` X ) C_ ( G DProd S ) ) |