This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprd.z | |- Z = ( Cntz ` G ) |
|
| dmdprd.0 | |- .0. = ( 0g ` G ) |
||
| dmdprd.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| dmdprdd.1 | |- ( ph -> G e. Grp ) |
||
| dmdprdd.2 | |- ( ph -> I e. V ) |
||
| dmdprdd.3 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
||
| dmdprdd.4 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
||
| dmdprdd.5 | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
||
| Assertion | dmdprdd | |- ( ph -> G dom DProd S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprd.z | |- Z = ( Cntz ` G ) |
|
| 2 | dmdprd.0 | |- .0. = ( 0g ` G ) |
|
| 3 | dmdprd.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | dmdprdd.1 | |- ( ph -> G e. Grp ) |
|
| 5 | dmdprdd.2 | |- ( ph -> I e. V ) |
|
| 6 | dmdprdd.3 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 7 | dmdprdd.4 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
|
| 8 | dmdprdd.5 | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) C_ { .0. } ) |
|
| 9 | eldifsn | |- ( y e. ( I \ { x } ) <-> ( y e. I /\ y =/= x ) ) |
|
| 10 | necom | |- ( y =/= x <-> x =/= y ) |
|
| 11 | 10 | anbi2i | |- ( ( y e. I /\ y =/= x ) <-> ( y e. I /\ x =/= y ) ) |
| 12 | 9 11 | bitri | |- ( y e. ( I \ { x } ) <-> ( y e. I /\ x =/= y ) ) |
| 13 | 7 | 3exp2 | |- ( ph -> ( x e. I -> ( y e. I -> ( x =/= y -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) ) ) |
| 14 | 13 | imp4b | |- ( ( ph /\ x e. I ) -> ( ( y e. I /\ x =/= y ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) |
| 15 | 12 14 | biimtrid | |- ( ( ph /\ x e. I ) -> ( y e. ( I \ { x } ) -> ( S ` x ) C_ ( Z ` ( S ` y ) ) ) ) |
| 16 | 15 | ralrimiv | |- ( ( ph /\ x e. I ) -> A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) ) |
| 17 | 6 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 18 | 2 | subg0cl | |- ( ( S ` x ) e. ( SubGrp ` G ) -> .0. e. ( S ` x ) ) |
| 19 | 17 18 | syl | |- ( ( ph /\ x e. I ) -> .0. e. ( S ` x ) ) |
| 20 | 4 | adantr | |- ( ( ph /\ x e. I ) -> G e. Grp ) |
| 21 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 22 | 21 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 23 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 24 | 20 22 23 | 3syl | |- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 25 | imassrn | |- ( S " ( I \ { x } ) ) C_ ran S |
|
| 26 | 6 | frnd | |- ( ph -> ran S C_ ( SubGrp ` G ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ x e. I ) -> ran S C_ ( SubGrp ` G ) ) |
| 28 | 25 27 | sstrid | |- ( ( ph /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ( SubGrp ` G ) ) |
| 29 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 30 | 24 29 | syl | |- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 31 | 28 30 | sstrd | |- ( ( ph /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 32 | sspwuni | |- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
|
| 33 | 31 32 | sylib | |- ( ( ph /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 34 | 3 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) -> ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 35 | 24 33 34 | syl2anc | |- ( ( ph /\ x e. I ) -> ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 36 | 2 | subg0cl | |- ( ( K ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( K ` U. ( S " ( I \ { x } ) ) ) ) |
| 37 | 35 36 | syl | |- ( ( ph /\ x e. I ) -> .0. e. ( K ` U. ( S " ( I \ { x } ) ) ) ) |
| 38 | 19 37 | elind | |- ( ( ph /\ x e. I ) -> .0. e. ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 39 | 38 | snssd | |- ( ( ph /\ x e. I ) -> { .0. } C_ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 40 | 8 39 | eqssd | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
| 41 | 16 40 | jca | |- ( ( ph /\ x e. I ) -> ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
| 42 | 41 | ralrimiva | |- ( ph -> A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) |
| 43 | 6 | fdmd | |- ( ph -> dom S = I ) |
| 44 | 1 2 3 | dmdprd | |- ( ( I e. V /\ dom S = I ) -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 45 | 5 43 44 | syl2anc | |- ( ph -> ( G dom DProd S <-> ( G e. Grp /\ S : I --> ( SubGrp ` G ) /\ A. x e. I ( A. y e. ( I \ { x } ) ( S ` x ) C_ ( Z ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( K ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) ) ) ) |
| 46 | 4 6 42 45 | mpbir3and | |- ( ph -> G dom DProd S ) |