This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relssres | |- ( ( Rel A /\ dom A C_ B ) -> ( A |` B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( Rel A /\ dom A C_ B ) -> Rel A ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | opeldm | |- ( <. x , y >. e. A -> x e. dom A ) |
| 5 | ssel | |- ( dom A C_ B -> ( x e. dom A -> x e. B ) ) |
|
| 6 | 4 5 | syl5 | |- ( dom A C_ B -> ( <. x , y >. e. A -> x e. B ) ) |
| 7 | 6 | ancrd | |- ( dom A C_ B -> ( <. x , y >. e. A -> ( x e. B /\ <. x , y >. e. A ) ) ) |
| 8 | 3 | opelresi | |- ( <. x , y >. e. ( A |` B ) <-> ( x e. B /\ <. x , y >. e. A ) ) |
| 9 | 7 8 | imbitrrdi | |- ( dom A C_ B -> ( <. x , y >. e. A -> <. x , y >. e. ( A |` B ) ) ) |
| 10 | 9 | adantl | |- ( ( Rel A /\ dom A C_ B ) -> ( <. x , y >. e. A -> <. x , y >. e. ( A |` B ) ) ) |
| 11 | 1 10 | relssdv | |- ( ( Rel A /\ dom A C_ B ) -> A C_ ( A |` B ) ) |
| 12 | resss | |- ( A |` B ) C_ A |
|
| 13 | 11 12 | jctil | |- ( ( Rel A /\ dom A C_ B ) -> ( ( A |` B ) C_ A /\ A C_ ( A |` B ) ) ) |
| 14 | eqss | |- ( ( A |` B ) = A <-> ( ( A |` B ) C_ A /\ A C_ ( A |` B ) ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( Rel A /\ dom A C_ B ) -> ( A |` B ) = A ) |